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 Since from the EFIE on the surface of the wire,

 This equation is called the Hallen's Integro-differential equation

 In this case, differential is outside the integral
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(b)

 This electric field is the field due to current  
 [which results because of the impressed or source field] and 
 this field can be written as the scattered field

 Therefore, 
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 Since from EFIE on the surface of the wire,

 This equation is the Pocklington's Integro-differential equation

 In this case, the differential has moved inside the integral
 Richmond has simplified the above equation as follows:   
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 (c) In cylindrical coordinates, 

 Problem under analysis has cylindrical symmetry and 
 observation for any values of            won’t make any difference 
 we may assume  without loss of generality
 hence 
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 where 

 and the inner integration  
 is also referred to as cylindrical wire kernel

 Thin wire approximation

 If we assume a<<λ and is very small, we have, 
 Inner integrand is no more dependent on the variable
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 Therefore

 Also called as thin wire approximation 
 with the reduced kernel

 For this case, we can write
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 Now in the light of this simplification of the magnetic vector 
potential, 

 we can simplify equation 10.29c (see example 10.4) as 
follows:

 This form of the Pocklington’s integro-differential is more 
suitable for MoM formulation 
 since it does not involve any differentiation.
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10.5.3 MoM Formulation of Pocklington's Integro-differential 
equation

 Applying MoM formulation to above integral equation
 Divide the wire in to N segments
 Consider pulse basis function and 

 express the current as a series expansion 
 in the form of a staircase approximation as
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 Fig. 10.8 Thin wire dipole is divided into N equal segments
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 is the length of the nth segment, expressed as 

 where

( 1)
2 2

L L L L
n z n

N N
      

'
nz

/ 2
' ' '

/ 2

( ) ( , )
L

inc
z

L

E I z F z z dz


  

 '2
02

2
' ,

1
),( zzG

zj
zzF



















 





10.5 Wire Antennas and Scatterers

1/13/2021MoM by Prof. Rakhesh Singh Kshetrimayum99

 Substituting I(z′) and 
 evaluating at z=zm (middle of the mth segment) as shown in the Fig. 10.7 

 for point matching with weighting functions as  
 where zm is the center of the segment m 

 and m=1,2,3,…,M, we can write, 
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 To overcome the singularity 
 for the self term or diagonal elements of the [Z] matrix

 we have assumed that the source is on the surface of the wire 
 whereas the observation is the axis of the wire

 Using mid-point integration, we have, 
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 For m=1,2,…,M,

 In the compact form, we can write 

 Multiplying both sides by Δz, we can write,
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 [In] can be computed by matrix inversion 
 Can find the approximate current distribution on the antenna

 Other important antenna parameters are 
 input impedance of the antenna and 
 the total radiated fields 

 which can be obtained as:
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Example 10.5

 Consider a short dipole (thin wire antenna) of length 0.3λ
and radius 0.01λ. 

 Find the current distribution on the short dipole and input 
impedance using MoM. 

 Assume frequency of operation of the antenna is at 1 MHz.
 Choose the number of discretizations on the thin wire as 

three segments only. 
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 For three segments discretization (                 ) on the thin 
wire antenna

 the MoM matrix equation will be 
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 where

 Simplifying the above expression of the Zmn (see book)
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 For thin wire approximations,

 [Z] symmetric Toeplitz matrix (need to calculate the first row of 
the matrix only)
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 About the [V] matrix, for delta gap excitation,

 since a voltage 1V exists at the feed gap only
 Solve the [I] matrix and get the current distribution 
 and the input impedance can be calculated as 
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 Choice of software languages for implementing electromagnetics
code 

 FORTRAN language complex numbers are a built-in 
datatype

 Many computational electromagnetics programmer prefer 
 to use FORTRAN language 
 for implementing their algorithms

 Earlier versions of FORTRAN were a functional language
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 New versions of FORTRAN are object-oriented languages
 C++, another object-oriented language, 

 is also widely used for many numerical methods

 FORTRAN and C++ are efficient in implementation 
 since the computational time is less

 MATLAB is also convenient environments since 
 it accepts complex numbers, 
 graphics are very easy to create and 
 many in-built functions are readily available for use
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 MATLAB any additional “for” loop in the program, 
 the time it takes to run the program increases drastically

 Good to consider the advantages and disadvantages 
 for employment of any software language

 For instance, 
 drawing graphics in C is somewhat involved, 
 but MATLAB is convenient for such things. 
 program written in C runs faster than MATLAB and so on
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 Computational electromagnetics is a topic 
 which you can learn only by doing

 Some simulation exercises are given at the end of the chapter, 
 you should always write down a 

 MATLAB or 
 any other software language program 

 in which you are comfortable and 
 see those results
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 Summarize the three steps involved in MoM:
(a) Derivation of appropriate integral equations

(b) Conversion or discretization of the integral equation into 

 a matrix equation using 
 basis or expansion functions and 
 weighting or testing functions 

 as well as evaluation of the matrix elements

(c) Solving the matrix equation and 

 obtaining the desired parameters
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 Programming Exercise 1 (In-class)
 Assume feed at the centre
 Radius of cylindrical dipole, a = 0.00065 m
 Length of dipole, 2l = 0.005 m
 Permittivity of free space, εo= 8.8541878176 ×10-12 F/m
 Relative permittivity, εr = 1  (air)
 Number of segments (pulses), N = 30    
 Segment length, Δz = 2l/N
 Match point, zm at segment m
 zm = (m - 0.5)Δz-l                       m = 1, 2, 3,…, N
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 Discretization of Zmn

 To create a complete matrix, [Zmn]:
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 Discretization voltage, V
 Vo=1

 Vm=4πεoεrVo

 To create transpose matrix, [Vm]:
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 The unknown charge densities, [In] along the dipole are 
determined 
 by inverting the matrix, [Zmn] and multiplying with the 

voltage, [Vm]

 Write a MATLAB program to plot line charge density (pC) 
versus distance (mm) of the centre-fed dipole
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 Write a MATLAB program to find the current distribution 
and input impedance of a centre-fed dipole

 Hints:
 Pocklington’s equation (Richmond’s expression)

 Piece-wise constant function
Magnetic frill source
 Point-matching method 
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Electrodynamic case
 Define z coordinate as symbol
 Radius cylindrical dipole, a = 0.00065 m
 Outer radius coaxial line, b = 0.00205 m
 Half length dipole, h = 0.005 m
 Operation frequency,  f = 1 GHz 
 Light velocity, c = 3×108 m/s
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 Permittivity of free space, εo= 8.8541878176 ×10-12

F/m

 Relative permittivity, εr = 1  (air)
 Relative permittivity of coaxial line medium, εr = 2.06  

(Teflon)

 Angular frequency, ω=2π f

 Propagation constant, k = 2π f (εr)0.5/ c
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 Number segment (pulses), N = 9    (odd number)

 Segment length, Δz = 2h/N
 Match point, zm at segment m

 zm = (m - 0.5)Δz – h            m = 1, 2, 3,…, N
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 Discretization of Zmn

 where
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 The integral Zmn can be solved by numerical integration 
(quadv function in MATLAB toolbox) for point z1 at m = 1 
segment

 We assume that zm= zn and solve the integral from  zn-(Δz/2) 
to zn+(Δz/2) and yield the matrix

 [Z11 ,  Z12 , Z13 ,  Z14 , Z15 ,  Z16 , Z17 ,  Z18 , Z19 ]
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 To create a matrix:

11 12 13 14 19

11 12 13 18

11 12 17

11

2

0 2

0 0 2

0 0 0 0 2

Z Z Z Z Z

Z Z Z Z

Z Z Z

Z

 
 
 
 
 
 
  







     


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 To create a complete matrix, [Zmn]:

 Magnetic frill source+

 the feed gap is replaced with a circumferentially directed 
magnetic current density existing over an annular aperture 

11 12 13 14 19

12 11 12 13 18

13 12 11 12 17

19 18 17 16 11

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z

Z Z Z Z Z

 
 
 
 
 
 
  







     



+https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=5948354
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 The inner radius of the aperture is that of the wire and outer 
radius is found from the characteristic impedance of the 
transmission line feeding the antenna

 For this frill source the electric field is found on the surface 
of the wire

 Discretization electric field, Ez

 where 

 
1 2

1 2ln

jkr jkr
i o o
zm

j V e e
E

b a r r

   
  

 

2 2
1 mr z a  2 2

2 mr z b 
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 assume Vo=1. 
 To create transpose matrix, [Em]:

 The unknown current vector, [In] along the dipole is 
determined by 
 inverting the matrix, [Zmn] and multiplying with the 

electric field vector, [Em]

1

2

3

9

i
z
i
z
i
z

i
z

E

E

E

E

 
 
 
 
 
 
  


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 The input impedance, Zin at coaxial fed point (at z5 = 0). 
 We assume v0=1 V.
 Zin=v0/I5

1

1 11 12 13 14 19 1

2 12 11 12 13 18 2

3 13 12 11 12 17 3

9 19 18 17 16 11 9

i
z
i
z
i
z

i
z

I Z Z Z Z Z E

I Z Z Z Z Z E

I Z Z Z Z Z E

I Z Z Z Z Z E

     
    
    
    
    
    
         







       




