10.5 Wire Antennas and Scatterers

¢ Since from the EFIE on the surface of the wire,

E;cat(p:a):_E;'nc(p:a)

: ( R 2+ﬂ5] [ 1)G(z.2 )z =—E™(p=a)
YA

J &, _L/2

® This equation is called the Hallen's Integro—dyﬁrerential equation

® In this case, differential is outside the integral
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10.5 Wire Antennas and Scatterers

L/2 2
(b) E, =1 j (a+ B; Jl(z )G(z,z Yz
joe 0_7/» 027

e This electric field is the field due to current I(z)
® [which results because of the impressed or source field] and

® this field can be written as the scattered field

® Theref
eretore, ( p
E = j 1(z)G(z,z)dz
I ATANS
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10.5 Wire Antennas and Scatterers

® Since from EFIE on the surface of the wire,

lz;aﬁ (/? ::Cl) ::__lz:uf(/? ::CZ)

1 L/2 52 ' ' ' .
e | (7%]1(2 )G(z,2)dz = —E(p = a)
0 -L/2

® This equation is the Pocklington's Integro-differential equation
® In this case, the differential has moved inside the integral

* Richmond has simplified the above equation as follows:
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10.5 Wire Antennas and Scatterers

® (c) In cylindrical coordinates,

' 1\ 2 - _>12
e

cp=a.|p-pl=prad~25e 5 = pPrad~2pacos(p-4)

‘F—F":\/pz +a’ —2,0azcos(¢5—¢')+(z—Z')2

=>r

® Problem under analysis has cylindrical symmetry and
® observation for any valuesof ¢  won’t make any difference

® we may assume without loss of generality ¢ =0

® hence ¢-¢ =¢

MoM by Prof. Rakhesh Singh Kshctrimayum 1/13/2021




10.5 Wire Antennas and Scatterers

L/2 '\ 27 =
3 I(Z)Fe
A=y | | g

-L/2 0

2T

* where r:\/,02+c12—2,oacos(¢')—|r(z—z')2

2 _—jpor

e '
® and the inner integration I - d¢
0

® is also referred to as cylindrical wire kernel

: : : : ) \2
¢ Thin wire approximation reLlpt+ (z —z )

* If we assume a<<A and is very small, we have,

® Inner integrand is no more dependent on the variable
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10.5 Wire Antennas and Scatterers

® Therefore

L/2 —j
[(Z )e 7B
AZ :lLlO J.

-L/2 l nr J

® Also called as thin wire approximation

dz

® with the reduced kernel

¢ For this case, we can write

G(z,zv) =~ e = G(r)

Ay
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10.5 Wire Antennas and Scatterers

e Now in the light of this simplification of the magnetic vector

potential,
* we can simplify equation 10.29c¢ (see example 10.4) as
follows:
1 L/2 —JjBor

[ 1. . [(1+ jByr)(2r* =3a* )+ (Bar) ]dz' - _E"™(p=a)

jos,4r i

® This form of the Pocklington’s integro—differential is more
suitable for MoM formulation

® since it does not involve any differentiation.
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10.5 Wire Antennas and Scatterers

10.5.3 MoM Formulation of Pocklington's Integro-differential
equation

* Applying MoM formulation to above integral equation

® Divide the wire in to N segments

e Consider pulse basis function and
o eXpress the current as a series expansion

® in the form of a staircase approximation as

b (2) :{1 for Az

0 otherwise
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* Fig. 10.8 Thin wire dipole is divided into N equal segments
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10.5 Wire Antennas and Scatterers

'

® Az, isthe length of the n™ segment, expressed as

L L L L
——+—Mn-)<z<——+—n
2 N 2 N

L/2
—E7 = J I(z] dz
L/2

2
o where  F(z,z)=——| L1 g2 G(ZaZ)
jos| ;2 Y
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10.5 Wire Antennas and Scatterers

Substituting I(z") and

\

® evaluating at z=z_ (middle of the m"™ segment) as shown in the Fig. 10.7

for point matching with Weighting functions as W, (z)=6(z-z,)

where z_ is the center of the segment m

z =—£+£(m—0.5)
2 N

m

and m=1,2 3,... .M, we can write,

. N ' '
—E;(zm)z Zln jF(Zm,Z )Y’Z
n=1 AZ;i
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10.5 Wire Antennas and Scatterers

e To overcome the singularity

® for the self term or diagonal elements of the [Z] matrix

® we have assumed that the source is on the surface of the wire

® whereas the observation is the axis of the wire

¢ Using mid—point integration, we have,

. N
_E;(Zm): Zlnan
n=1

® where Fop = JF(Zm,Z }z’z EF(Zm,Zn)AZn

Az

n
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10.5 Wire Antennas and Scatterers
® Form=1,2,...,M,

_El F, EN__]I_ _E;nc(zl)
Fy Fy o oo Byl L _ —E(z,)
_FMI Fyy e FMN_ _]N_ __E;nc (ZN)_

® In the compact form, we can write

[an ][]n ]: _[Em ]
* Multiplying both sides by Az, we can write,

2, ]12,]==17..]
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10.5 Wire Antennas and Scatterers

® [I] can be computed by matrix inversion

® Can find the approximate current distribution on the antenna

e Other important antenna parameters are
® input impedance of the antenna and

® the total radiated fields

® which can be obtained as:

_ 2K
input — ?

2

ot (= rinc (= rscat (= znc b 1 82 2 e—jﬂor v
E“ (F)= E™ (F)+ E* (F) = E™ (F)+ ij;]b(z a)g4ﬂ{82+ 0) —dz
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10.5 Wire Antennas and Scatterers

Example 10.5

* Consider a short dipole (thin wire antenna) of length 0.3\
and radius 0.01A.

® Find the current distribution on the short dipole and input

impedance using MoM.
e Assume frequency of operation of the antenna is at 1 MHz.

® Choose the number of discretizations on the thin wire as

three se gments only.
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wire antenna

® the MoM matrix equation will be

L, 2, Zj
Zz1 Zzz 23 -
Ly Ly Ly

\9]
(98] (98]

(98]
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® For three segments discretization ( Az=0.14 ) on the thin
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10.5 Wire Antennas and Scatterers

® where

g/ [(1 + B, ) (2115}1 —3a’ ) + (,Boarmn )2 J Az

. 5
jos,drr,

* Simplitying the above expression of the Z_ (see book)

N i) 3 ) e i e )

zZ 3
87[2/1(’:"”)
A
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10.5 Wire Antennas and Scatterers

® For thin wire approximations,

v _\/,0 Z -z,

.'.iqlzx/aizazrzz:%:0.0M;
n,=~Na'+Az* =1, =r, =1, =0.14;

Yy :\/a2 +(2AZ) =1, =024

® [Z] symmetric Toeplitz matrix (need to calculate the first row of

the matrix only) A A
1 2 3
[Z ] =\Z, Z, Z,

_Z3 Z2 Zl _
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10.5 Wire Antennas and Scatterers

* About the [V] matrix, for delta gap excitation,

V]=-|1

® since a Voltage 1V exists at the feed gap only
® Solve the [I] matrix and get the current distribution
* and the input impedance can be calculated as

;]

input .
v b
2
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10.6 Software language for implementation
of electromagnetics codes

® Choice (yF scjtware languages for implementing electromagnetics

code

e FORTRAN language complex numbers are a built-in
datatype

® Many computational electromagnetics programmer prefer

® to use FORTRAN language

e for implementing their algorithms

e Earlier versions of FORTRAN were a functional language
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10.6 Software language for implementation
of electromagnetics codes

® New versions of FORTRAN are object-oriented languages
® C++, another object-oriented language,

® is also widely used for many numerical methods

®* FORTRAN and C++ are efficient in implementation
® since the computational time is less

e MATLAB is also convenient environments since
® it accepts complex numbers,

° graphics are very easy to create and

® many in-built functions are readily available for use
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10.6 Software language for implementation
of electromagnetics codes

®* MATLAB any additional “for” loop in the program,

® the time it takes to run the program increases drastically
® Good to consider the advantages and disadvantages

® for employment of any software language
® For instance,

® drawing graphics in C is somewhat involved,

® but MATLAB is convenient for such things.
® program written in C runs faster than MATLAB and so on
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10.6 Software language for implementation
of electromagnetics codes

© Computational electromagnetics is a topic

® which you can learn only by doing

* Some simulation exercises are given at the end of the chapter,

® you should always write down a
e MATLAB or

® any other software language program
® in which you are comfortable and

® see those results
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10.7 Summary

® Summarize the three steps involved in MoM:
(a) Derivation (yf appropriate jntegml equations
(b) Conversion or discretization of the integral equation into

® g matrix equation using
® basis or expansion functions and

® Wejghting or testjng functions
® as well as evaluation of the matrix elements
(¢) Solving the matrix equation and

° obtaining the desired parameters
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Dipole (Electrostatics)

Programming Exercise 1 (In-class)

Assume feed at the centre
Radius of cylindrical dipole, a = 0.00065 m
Length of dipole, 2/ = 0.005 m

Permittivity of free space, £,= 8.8541878176 X10"* F/m

Relative permittivity, € = 1 (air)
Number of segments (pulses), N = 30
Segment length, Az = 21/N

Match point, z_ at segment m

z = (m-0.5)AzI m=1,2,3,..

MoM by Prof. Rakhesh Singh Kshctrimayum
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Dipole (Electrostatics)

® Discretization of Z__

21n

a

(AZ/2)+\/a2 +(Az/2) J

a’+

+

z, -z +AZ/2)2

+

ln[zm +(Az/2)-2z,
k z,, —(Az/2) -z,

® To create a complete matrix, [Z_|:

le Z12 21,30
Zzl Zzz Zz,30
_Z30,1 Z30,2 Z30,3o_

MoM by Prof. Rakhesh Singh Kshctrirnayum
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Dipole (Electrostatics)

* Discretization voltage, V

[ [/0:1

¢ Vm:4-7'CEOEIVO

® To create transpose matrix, [V ]:

N N
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Dipole (Electrostatics)

® The unknown charge densities, [I | along the dipole are

determined

® by inverting the matrix, [Z, | and multiplying with the

voltage, [V ]

| Zy

ZZI

_230,1

ZlZ
ZZ2

Z30,2

Zl,30
Z2,30

Zso,so |

-1

4
VZ

Vi |

® Write a MATLAB program to plot line charge density (pC)

versus distance (mm) of the centre-fed dipole
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Programming Exercise 3 (Homework)

e Write a MATLAB program to find the current distribution
and input impedance of a centre-fed dipole
® Hints:

° Pocklington’s equation (Richmond’s expression)

1 L/2 — jkr

I 1.(2) ers [(1+jkr)<2r2 —3a2)+(kar)2 }dz' =—E™(p=a)

-L/2

jose,4r

® Piece-wise constant function
® Magnetic frill source

° Point—matching method
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Dipole (Pocklington's Equation)
Electrodynamic case

® Detine z coordinate as symbol

* Radius cylindrical dipole, a = 0.00065 m

® Outer radius coaxial line, » = 0.00205 m

* Half length dipole, h = 0.005 m

® Operation frequency, f = 1 GHz

* Light velocity, c = 3X10°% m/s
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Dipole (Pocklington’s Equation)

° Permittivity of free space, € = 8.8541878176 X10°"°
F/m

* Relative permittivity, & = 1 (air)

* Relative permittivity of coaxial line medium, £ = 2.06

(Tetlon)
* Angular frequency, W=2T f
* Propagation constant, k = 2T f (£)°>/ ¢
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Dipole (Pocklington’s Equation)
® Number segment (pulses), N=9 (odd number)
* Segment length, Az = 2h/N

® Match point, z, at segment m

®z =(m-0.5Az—h m=1,2,3,...,N
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Dipole (Pocklington’s Equation)

® Discretization of Z__

Z — LX
" 4r
20+ 822 =k, (1 + jkr, )(Zrnf —3a2)
j - ) dz'
/Zn_Az/z P _+(karm)

® where

roo= \/a2 + (zm — Z')2
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Dipole (Pocklington’s Equation)

® The integral Z__can be solved by numerical integration
(quadv function in MATLAB toolbox) for point z1 at m = 1

segment

® We assume that z, = z_ and solve the integral from z -(Az/2)

to z,+(Az/2) and yield the matrix
* s ZisZiss Zis Ziss Zigs Zirs Ziss> Zio
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Dipole (Pocklington’s Equation)

® Jo create a matrix:

_Z11/2 le Z13 Zl4 Zl9
0 Zn/2 Z12 Zl3 le
0 0 211/2 le Zl7

0 0 0 0 - Z,/2
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Dipole (Pocklington’s Equation)

* To create a complete matrix, [Z_|:

le Zl2
Zl2 le
Zl3 Z12
_Zl9 ZIS

* Magnetic frill source™

Zl3
Zl2
le

Zl7

Zl4
Zl3
Zl2

Zl6

N

® the feed gap is replaced with a circumferentially directed

magnetic current density existing over an annular aperture

https: / /ieeexplore.iece.org/stamp/stamp.jspfarnumber=>5948354
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Dipole (Pocklington’s Equation)

® The inner radius of the aperture is that of the wire and outer
radius is found from the characteristic impedance of the

transmission line feeding the antenna

e For this frill source the electric field is found on the surface

of the wire

* Discretization electric field, E

 —joeV, {ejk’l e /12 }

In(b/a)| n B r,
\/Z’i +a’ o, = \/zi + b’
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Dipole (Pocklington’s Equation)
E:

® assume JVo=1.

i
® To create transpose matrix, [E ] E 22

]
EZ3

Bl
® The unknown current vector, [I ] along the dipole is
determined by

® inverting the matrix, [Z, | and multiplying with the
electric field vector, [E_]
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Dipole (Pocklington’s Equation)

[, Z, 4,
1, L, 4,
/ 3| le le

[9 Zl9 ZIS

Zl3
ZIZ
le

Zl7

Zl4
le
le

Zl6

ZI9
ZlS
Zl7

le_

-1

Ei

A

Ei

z2

Ei

z3

Ei

|29 |

® The input impedance, Z,_ at coaxial fed point (at z; = 0).

® We assume vO=1V.

° Z =v0/I;
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