
Programming Exercise 2 (In-class)
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 Write a MATLAB program to find the current distribution and 
input impedance of a centre-fed dipole
 Hallen’s equation (Exact Kernel)

 Piece-wise constant function
 Magnetic frill source
 Point-matching method 
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Dipole (Hallen’s Equation)
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 Exact Kernel
 Define z coordinate as symbol
 Radius of cylindrical dipole, a = 0.00065 m
 Half-length dipole, h = 0.005 m
 Operation frequency,  f = 1 GHz 
 Light velocity, c = 3×108 m/s



Dipole (Hallen’s Equation)
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 Permittivity of free space, εo= 8.8541878176 ×10-12

F/m

 Permeability of free space, μo= 4π ×10-7 H/m
 Intrinsic impedance of free space, η =377 Ω
 Relative permittivity, εr = 1  (air)
 Angular frequency, ω=2π f
 Propagation constant, k = 2π f (εr)0.5/ c



Dipole (Hallen’s Equation)
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 Number of segment (pulses), N = 9    (odd number)

 Segment length, Δz = 2h/N
 Match point, zm at segment m

 zm = (m - 0.5)Δz – h            m = 1, 2, 3,…, N
 Discretization of Amn
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Dipole (Hallen’s Equation)
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 The double integral Amn can be solved by the numerical 
integration (integral2 function in MATLAB toolbox) for 
point z1 at m = 1 segment. 

 [A11 ,  A12 , A13 ,  A14 , A15 ,  A16 , A17 ,  A18 , A19 ]
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 To create a matrix:

11 12 13 14 19

11 12 13 18

11 12 17

11

2

0 2

0 0 2

0 0 0 0 2

A A A A A

A A A A

A A A

A

 
 
 
 
 
 
  







     





Dipole (Hallen’s Equation)

1/20/2021MoM by Prof. Rakhesh Singh Kshetrimayum134

 To create a complete matrix, [Amn]:
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 Discretization Bm and Cm. 
 Create transpose matrix, [Bm] and matrix, [Cm]:
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1/20/2021MoM by Prof. Rakhesh Singh Kshetrimayum136

 Thus, the discretization of can be written in matrix form 
as:

 where   A11 = A22 = A33 = … = A99. 
 The current, In along the dipole can be determined by 

inverting the matrix, [Amn]:


      n m n o m mI A B C 

         
   

1 1

n o m n m m n m

o n n

I A B A C

D S





  

 



Dipole (Hallen’s Equation)
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 where

 As it is known that the current, I9 = 0 at both ends (z = 
± h) of the dipole vanishes, thus
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Dipole (Hallen’s Equation)
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 The value of ξo is determined by enforcing the boundary 
conditions at the ends of the dipole, yields
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Programming Exercise 4 (Homework)
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 Write a MATLAB program to find the current distribution 
and input impedance of a centre-fed dipole
Hallen’s equation (Reduced Kernel)

 Piece-wise constant function
Magnetic frill source
 Point-matching method 

   0
0

1

4 2
'

h

z
h

jV
I Kdz kz k z

 

 
 

 

22

222

jk a z ze
K d

a z z








  




 




Dipole (Hallen’s Equation)
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 Define z coordinate as symbol
 Radius cylindrical dipole, a = 0.00065 m
 Half-length dipole, h = 0.005 m
 Operation frequency,  f = 1 GHz 
 Light velocity, c = 3×108 m/s

 Permittivity of free space, εo= 8.8541878176 ×10-12

F/m

 Permeability of free space, μo= 4π ×10-7 H/m
 Intrinsic impedance of free space, η =377 Ω



Dipole (Hallen’s Equation)
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 Relative permittivity, εr = 1  (air)
 Angular frequency, ω=2π f
 Propagation constant, k = 2π f (εr)0.5/ c
 Number segment (pulses), N = 9    (odd number)

 Segment length, Δz = 2h/N
 Match point, zm at segment m

 zm = (m - 0.5)Δz – h            m = 1, 2, 3,…, N
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1/20/2021MoM by Prof. Rakhesh Singh Kshetrimayum142

 Discretization of Amn

 The double integral Amn can be solved by numerical 
integration (integral function in MATLAB toolbox) for 
point z1 at m = 1 segment. 

 [A11 ,  A12 , A13 ,  A14 , A15 ,  A16 , A17 ,  A18 , A19 ]
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 To create a matrix: we assume that zm= zn and solve the 
integral from  zn- (Δz/2) to zn+(Δz/2) and yield the matrix:
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 To create a complete matrix, [Amn]:
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 Discretization Cm and Bm. Create transpose matrix, [Cm] and 
matrix, [Bm]:
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 Thus, the discretization can be written in matrix form as:

 where   A11 = A22 = A33 = … = A99. The current, In along 
the dipole can be determined by inverting the matrix, 
[Amn]:
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 where

 As it is known that the current, I9 = 0 at both ends (z = ± h) 
of the dipole vanishes, thus

 The value of ξo is determined by enforcing the boundary 
conditions at the ends of the dipole:
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Far-field radiation of dipole
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Far-field radiation of dipole
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