Programming Exercise 2 (In-class)

- Write a MATLAB program to find the current distribution and input impedance of a centre-fed dipole
- Hallen's equation (Exact Kernel)

$$
\begin{aligned}
\frac{1}{4 \pi} \int_{-h}^{h} I_{z} K d z^{\prime} & =\xi_{0} \cos (k z)-\frac{j V_{0}}{2 \eta} \sin (k|z|) \\
K & =\int_{-\pi}^{\pi} \frac{e^{-j k \sqrt{4 a^{2} \sin ^{2}(\phi / 2)+\left(z-z^{\prime}\right)^{2}}}}{2 \pi \sqrt{4 a^{2} \sin ^{2}(\phi / 2)+\left(z-z^{\prime}\right)^{2}}} d \phi
\end{aligned}
$$

- Piece-wise constant function
- Magnetic frill source
- Point-matching method

Dipole (Hallen's Equation)

- Exact Kernel
- Define z coordinate as symbol
- Radius of cylindrical dipole, $a=0.00065 \mathrm{~m}$
- Half-length dipole, $h=0.005 \mathrm{~m}$
- Operation frequency, $f=1 \mathrm{GHz}$
- Light velocity, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Dipole (Hallen’s Equation)

- Permittivity of free space, $\varepsilon_{o}=8.8541878176 \times 10^{-12}$ F/m
- Permeability of free space, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
- Intrinsic impedance of free space, $\eta=377 \Omega$
- Relative permittivity, $\varepsilon_{r}=1$ (air)
- Angular frequency, $\omega=2 \pi f$
- Propagation constant, $k=2 \pi f\left(\varepsilon_{r}\right)^{0.5} / c$

Dipole (Hallen's Equation)

- Number of segment (pulses), $N=9$ (odd number)
- Segment length, $\Delta z=2 h / N$
- Match point, z_{m} at segment m
- $z_{m}=(m-0.5) \Delta z-h \quad m=1,2,3, \ldots, N$
- Discretization of $A_{m n}$

$$
K=\int_{-\pi}^{\pi} \frac{e^{-j k \sqrt{4^{2} \sin ^{2} i^{2}(\phi / 2)(t z-z)^{2}}}}{2 \pi \sqrt{4 a^{2} \sin ^{2}(\phi / 2)+\left(z-z^{\prime}\right)^{\prime}}} d \phi
$$

$$
\begin{array}{lr}
A_{m n}=\frac{1}{4 \pi} \times \\
\int_{z_{n}-\Delta z / 2}^{z_{n}+\Delta z / 2} \int_{-\pi}^{\pi} \frac{e^{-j k \sqrt{4 a^{2} \sin ^{2}(\phi / 2)+\left(z_{m}-z^{\prime}\right)^{2}}} \frac{\int_{2}^{n} I_{2} K d z}{2 \pi}=\xi_{0} \cos (k z)-\frac{j V_{0}}{2 \eta} \sin (k \mid z)}{2 \pi \sqrt{4 a^{2} \sin ^{2}(\phi / 2)+\left(z_{m}-z^{\prime}\right)^{2}}} d \phi d z^{\prime}
\end{array}
$$

Dipole (Hallen's Equation)

- The double integral $A_{m n}$ can be solved by the numerical integration (integral2 function in MATLAB toolbox) for point z_{1} at $m=1$ segment.
- $\left[A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}, A_{17}, A_{18}, A_{19}\right]$

Dipole (Hallen's Equation)

- To create a matrix:

$$
\left[\begin{array}{cccccc}
A_{11} / 2 & A_{12} & A_{13} & A_{14} & \cdots & A_{19} \\
0 & A_{11} / 2 & A_{12} & A_{13} & \cdots & A_{18} \\
0 & 0 & A_{11} / 2 & A_{12} & \cdots & A_{17} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & A_{11} / 2
\end{array}\right]
$$

Dipole (Hallen's Equation)

- To create a complete matrix, $\left[A_{m n}\right]$:

$$
\left[\begin{array}{cccccc}
A_{11} & A_{12} & A_{13} & A_{14} & \cdots & A_{19} \\
A_{12} & A_{11} & A_{12} & A_{13} & \cdots & A_{18} \\
A_{13} & A_{12} & A_{11} & A_{12} & \cdots & A_{17} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A_{19} & A_{18} & A_{17} & A_{16} & \cdots & A_{11}
\end{array}\right]
$$

Dipole (Hallen’s Equation)

- Discretization B_{m} and C_{m}.

$$
\frac{1}{4 \pi} \int_{-h}^{h} I_{z} K d z^{\prime}=\xi_{0} \cos (k z)-\frac{j V_{0}}{2 \eta} \sin (k|z|)
$$

- Create transpose matrix, $\left[B_{m}\right]$ and matrix, $\left[C_{m}\right]$:

$$
\begin{array}{rlrl}
B_{m} & =\cos \left(k z_{m}\right) & C_{m}=-\frac{j}{2 \eta} \sin \left(k\left|z_{m}\right|\right) \\
& =\left[\begin{array}{c}
\cos \left(k z_{1}\right) \\
\cos \left(k z_{2}\right) \\
\vdots \\
\cos \left(k z_{9}\right)
\end{array}\right] & & =-\frac{j}{2 \eta}\left[\begin{array}{c}
\sin \left(k\left|z_{1}\right|\right) \\
\sin \left(k\left|z_{2}\right|\right) \\
\vdots \\
\sin \left(k\left|z_{9}\right|\right)
\end{array}\right]
\end{array}
$$

Dipole (Hallen's Equation)

- Thus, the discretization of can be written in matrix form as:

$$
\left[I_{n}\right]\left[A_{m n}\right]=\xi_{o}\left[B_{m}\right]+\left[C_{m}\right]
$$

- where $A_{11}=A_{22}=A_{33}=\ldots=A_{99}$.
- The current, I_{n} along the dipole can be determined by inverting the matrix, $\left[A_{m n}\right]$:
$\left[I_{n}\right]=\xi_{o}\left[A_{m n}\right]^{-1}\left[B_{m}\right]+\left[A_{m n}\right]^{-1}\left[C_{m}\right]$

$$
=\xi_{o}\left[D_{n}\right]+\left[S_{n}\right]
$$

Dipole (Hallen's Equation)

- where

$$
\begin{aligned}
& {\left[D_{n}\right]=\left[A_{m n}\right]^{-1}\left[B_{m}\right]} \\
& {\left[S_{n}\right]=\left[A_{m n}\right]^{-1}\left[\mathcal{C}_{m}\right]}
\end{aligned}
$$

- As it is known that the current, $I_{9}=0$ at both ends $(z=$ $\pm h$) of the dipole vanishes, thus

$$
\xi_{o}\left[D_{9}\right]+\left[S_{9}\right]=0
$$

Dipole (Hallen’s Equation)

- The value of ξ_{0} is determined by enforcing the boundary conditions at the ends of the dipole, yields

$$
\xi_{o}=-\frac{\left[S_{9}\right]}{\left[D_{9}\right]}
$$

Programming Exercise 4 (Homework)

- Write a MATLAB program to find the current distribution and input impedance of a centre-fed dipole
- Hallen's equation (Reduced Kernel)

$$
\frac{1}{4 \pi} \int_{-h}^{h} I_{z} K d z^{\prime}=\xi_{0} \cos (k z)-\frac{j V_{0}}{2 \eta} \sin (k|z|)
$$

$$
K=\int_{-\pi}^{\pi} \frac{e^{-j k \sqrt{a^{2}+\left(z-z^{\prime}\right)^{2}}}}{2 \pi \sqrt{a^{2}+\left(z-z^{\prime}\right)^{2}}} d \phi
$$

- Piece-wise constant function
- Magnetic frill source
- Point-matching method

Dipole (Hallen's Equation)

- Define z coordinate as symbol
- Radius cylindrical dipole, $a=0.00065 \mathrm{~m}$
- Half-length dipole, $h=0.005 \mathrm{~m}$
- Operation frequency, $f=1 \mathrm{GHz}$
- Light velocity, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- Permittivity of free space, $\varepsilon_{o}=8.8541878176 \times 10^{-12}$ F/m
- Permeability of free space, $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
- Intrinsic impedance of free space, $\eta=377 \Omega$

Dipole (Hallen's Equation)

- Relative permittivity, $\varepsilon_{r}=1$ (air)
- Angular frequency, $\omega=2 \pi f$
- Propagation constant, $k=2 \pi f\left(\varepsilon_{r}\right)^{0.5} / c$
- Number segment (pulses), $N=9$ (odd number)
- Segment length, $\Delta z=2 h / N$
- Match point, z_{m} at segment m
- $z_{m}=(m-0.5) \Delta z-h \quad m=1,2,3, \ldots, N$

Dipole (Hallen's Equation)

- Discretization of $A_{m n}$

$$
A_{m n}=\frac{1}{4 \pi} \int_{z_{n}-\Delta z / 2}^{z_{n}+\Delta z / 2} \frac{e^{-j k \sqrt{a^{2}+\left(z_{m}-z^{\prime}\right)^{2}}}}{\sqrt{a^{2}+\left(z_{m}-z^{\prime}\right)^{2}}} d z^{\prime}
$$

- The double integral $A_{m n}$ can be solved by numerical integration (integral function in MATLAB toolbox) for point z_{1} at $m=1$ segment.
- $\left[A_{11}, A_{12}, A_{13}, A_{14}, A_{15}, A_{16}, A_{17}, A_{18}, A_{19}\right]$

Dipole (Hallen's Equation)

- To create a matrix: we assume that $z_{m}=z_{n}$ and solve the integral from $z_{n}-\left(\Delta_{z} / 2\right)$ to $z_{n}+\left(\Delta_{z} / 2\right)$ and yield the matrix:

$$
\left[\begin{array}{cccccc}
A_{11} / 2 & A_{12} & A_{13} & A_{14} & \cdots & A_{19} \\
0 & A_{11} / 2 & A_{12} & A_{13} & \cdots & A_{18} \\
0 & 0 & A_{11} / 2 & A_{12} & \cdots & A_{17} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & A_{11} / 2
\end{array}\right]
$$

Dipole (Hallen's Equation)

- To create a complete matrix, $\left[A_{m n}\right]$:

$$
\left[\begin{array}{cccccc}
A_{11} & A_{12} & A_{13} & A_{14} & \cdots & A_{19} \\
A_{12} & A_{11} & A_{12} & A_{13} & \cdots & A_{18} \\
A_{13} & A_{12} & A_{11} & A_{12} & \cdots & A_{17} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
A_{19} & A_{18} & A_{17} & A_{16} & \cdots & A_{11}
\end{array}\right]
$$

Dipole (Hallen's Equation)

- Discretization C_{m} and B_{m}. Create transpose matrix, $\left[C_{m}\right]$ and matrix, $\left[B_{m}\right]$:

$$
\begin{aligned}
C_{m} & =-\frac{j}{2 \eta} \sin \left(k\left|z_{m}\right|\right) & B_{m} & =\cos \left(k z_{m}\right) \\
& =-\frac{j}{2 \eta}\left[\begin{array}{c}
\sin \left(k\left|z_{1}\right|\right) \\
\sin \left(k\left|z_{2}\right|\right) \\
\vdots \\
\sin \left(k\left|z_{9}\right|\right)
\end{array}\right] & & =\left[\begin{array}{c}
\cos \left(k z_{1}\right) \\
\cos \left(k z_{2}\right) \\
\vdots \\
\cos \left(k z_{9}\right)
\end{array}\right]
\end{aligned}
$$

Dipole (Hallen's Equation)

- Thus, the discretization can be written in matrix form as:

$$
\left[I_{n}\right]\left[A_{m n}\right]=\xi_{0}\left[B_{m}\right]+\left[C_{m}\right]
$$

- where $A_{11}=A_{22}=A_{33}=\ldots=A_{99}$. The current, I_{n} along the dipole can be determined by inverting the matrix, $\left[A_{m n}\right]$:

$$
\begin{aligned}
{\left[I_{n}\right] } & =\xi_{o}\left[A_{m n}\right]^{-1}\left[B_{m}\right]+\left[A_{m n}\right]^{-1}\left[C_{m}\right] \\
& =\xi_{o}\left[D_{n}\right]+\left[S_{n}\right]
\end{aligned}
$$

Dipole (Hallen's Equation)

- where

$$
\left[D_{n}\right]=\left[A_{m n}\right]^{-1}\left[B_{m}\right] \quad\left[S_{n}\right]=\left[A_{m n}\right]^{-1}\left[C_{m}\right]
$$

- As it is known that the current, $I_{9}=0$ at both ends $(z= \pm h)$ of the dipole vanishes, thus

$$
\xi_{o}\left[D_{9}\right]+\left[S_{9}\right]=0
$$

- The value of ξ_{0} is determined by enforcing the boundary conditions at the ends of the dipole:

$$
\xi_{o}=-\frac{\left[S_{9}\right]}{\left[D_{9}\right]}
$$

Fig. Parallel radiated line approximation for far field analysis

Far-field radiation of dipole

$$
\begin{aligned}
A_{z} & =\frac{1}{4 \pi} \int_{-h}^{h} I_{z} \frac{e^{-j j r}}{r} d z^{\prime} \\
A_{z} & \simeq \frac{1}{4 \pi} \int_{-h}^{h} I_{z} \frac{e^{-j k\left(\rho-z^{\prime} \cos \theta\right)}}{\rho} d z^{\prime} \\
& =I_{z} \frac{e^{-j k \rho}}{4 \pi \rho} \int_{-h}^{h} e^{j z^{\prime} \cos \theta} d z^{\prime} \\
E_{\theta} & =-j \omega \mu A_{\theta} \hat{\theta} \\
& =j \omega \mu \sin \theta A_{z} \hat{\theta}
\end{aligned}
$$

Far-field radiation of dipole

$$
\begin{aligned}
E_{\theta} & =j \omega \mu \sin \theta I_{z} \frac{e^{-j k \rho}}{4 \pi \rho} \int_{-h}^{h} e^{j k z^{\prime} \cos \theta} d z^{\prime} \hat{\theta} \\
& =j \omega \mu \sin \theta I_{z} \frac{e^{-j k \rho}}{4 \pi \rho}\left(\frac{e^{j k h \cos \theta}-e^{-j k h \cos \theta}}{j k \cos \theta}\right) \hat{\theta} \\
& =j \omega \mu \sin \theta I_{z} h \frac{e^{-j k \rho}}{2 \pi \rho} \frac{\sin (k h \cos \theta)}{k h \cos \theta} \hat{\theta}
\end{aligned}
$$

