MoM Advances

- Brief review of Dyadic analysis:
- Like vector analysis, dyadic analysis is for dyads
- Dyadic operations and theorems provide an effective tool for manipulation of field quantities (Tai, C.T., "Dyadic Green's Functions in Electromagnetic Theory,"New York: IEEE Press, 2nd ed., 1993)
- Dyad notation was first introduced by Gibbs in 1884 (Gibbs, J.W., "The scientific papers of J.Willard Gibbs" Vol. 2, pp. 84-90, New York: Dover, 1961.)

MoM Advances

- Dyads are extension of vectors
- Consider a vector \vec{D} in Cartesian coordinates represented as
- $\vec{D}=D_{1} \hat{x}_{1}+D_{2} \hat{x}_{2}+D_{3} \hat{x}_{3}=\sum_{i=1}^{3} D_{i} \hat{x}_{i}$
- It is just a compact and convenient notation of a vector and its components in which
- $D_{1}=D_{x}, \hat{x}_{1}=\hat{x}$,
- $D_{2}=D_{y}, \hat{x}_{2}=\hat{y}$,
- $D_{3}=D_{z}, \hat{x}_{3}=\hat{z}$

MoM Advances

- Now consider three such different vectors \vec{D}_{1}, \vec{D}_{2} and \vec{D}_{3}
- where
- $\vec{D}_{1}=\sum_{i=1}^{3} D_{i 1} \hat{x}_{i}$,
- $\vec{D}_{2}=\sum_{i=1}^{3} D_{i 2} \hat{x}_{i}$ and
- $\vec{D}_{3}=\sum_{i=1}^{3} D_{i 3} \hat{x}_{i}$
- Looks like a column vector

MoM Advances

- In compact notation,
- $\vec{D}_{j}=\sum_{i=1}^{3} D_{i j} \hat{x}_{i}, j=1,2,3$
- which constitute a dyad \overleftrightarrow{D} with two-sided arrow head like this
- $\overleftrightarrow{D}=\sum_{j=1}^{3} \vec{D}_{j} \hat{x}_{j}$
- $=\sum_{j=1}^{3}\left(\sum_{i=1}^{3} D_{i j} \hat{x}_{i}\right) \hat{x}_{j}$
- $=\sum_{j=1}^{3} \sum_{i=1}^{3} D_{i j} \hat{x}_{i} \hat{x}_{j}$

MoM Advances

- The doublets $\hat{x}_{i} \hat{x}_{j}$ form the nine unit dyad basis in dyadic analysis
- $\hat{x}_{1} \hat{x}_{1}=\hat{x} \hat{x}, \hat{x}_{1} \hat{x}_{2}=\hat{x} \hat{y}, \hat{x}_{1} \hat{x}_{3}=\hat{x} \hat{z}$
- $\hat{x}_{2} \hat{x}_{1}=\hat{y} \hat{x}, \hat{x}_{2} \hat{x}_{2}=\hat{y} \hat{y}, \hat{x}_{2} \hat{x}_{3}=\hat{y} \hat{z}$
- $\hat{x}_{3} \hat{x}_{1}=\hat{z} \hat{x}, \hat{x}_{3} \hat{x}_{2}=\hat{z} \hat{y}, \hat{x}_{3} \hat{x}_{3}=\hat{z} \hat{z}$
- which is an extension of three unit basis vectors in vector analysis
- $\hat{x}_{1}=\hat{x}$,
- $\hat{x}_{2}=\hat{y}$ and
- $\hat{x}_{3}=\hat{z}$
- Note that $\hat{x}_{i} \hat{x}_{j} \neq \hat{x}_{j} \hat{x}_{i}, i \neq j$ so the ordering is important

MoM Advances

- Matrix notation of a dyad \overleftrightarrow{D}
- $\overleftrightarrow{D}=\left(\vec{D}_{1} \vec{D}_{2} \vec{D}_{3}\right)=\left(\begin{array}{lll}D_{11} & D_{12} & D_{13} \\ D_{21} & D_{22} & D_{23} \\ D_{31} & D_{32} & D_{33}\end{array}\right)$
- In general dyads an be formed by product of two vectors \vec{A} and \vec{B} where \vec{A} is 3×1 matrix and \vec{B} is a 1×3 matrix
- which we usually call as juxtaposition of two vectors side by side without any operation
- $\overleftrightarrow{D}=\vec{A} \vec{B}$

MoM Advances

- We can also find the transpose of dyad \overleftrightarrow{D}
- $\overleftrightarrow{D}=\sum_{j=1}^{3} \vec{D}_{j} \hat{x}_{j}=\sum_{j=1}^{3} \sum_{i=1}^{3} D_{i j} \hat{x}_{i} \hat{x}_{j}$
- Or, in terms of x, y and z
- $\overleftrightarrow{D}=D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}$
- $+D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}$
- as
- $[\overleftrightarrow{D}]^{T}=\sum_{j=1}^{3} \hat{x}_{j} \vec{D}_{j}$
- $=\sum_{j=1}^{3} \sum_{i=1}^{3} D_{i j} \hat{x}_{j} \hat{x}_{i}$

MoM Advances

- Or, in terms of x, y and z
- $[\overleftrightarrow{D}]^{T}=D_{x x} \hat{x} \hat{x}+D_{y x} \hat{x} \hat{y}+D_{z x} \hat{x} \hat{z}$
- $+D_{x y} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+D_{z y} \hat{y} \hat{z}+D_{x z} \hat{z} \hat{x}+D_{y z} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}$
- For a symmetric dyad $[\overleftrightarrow{D}]^{T}=\overleftrightarrow{D}$
- One very important symmetric dyad is "idemfactor" or "unit" dyad for which $D_{i j}=\delta_{i j}$

MoM Advances

- Note that
- $D_{i j}=\delta_{i j}=1$ for $i=j$ and
- $D_{i j}=\delta_{i j}=0$ for $i \neq j$
- Hence $\delta_{11}=\delta_{22}=\delta_{33}=1$ implies $D_{11}=D_{22}=$ $D_{33}=1$
- Therefore, unit dyad is given by
- $\overleftrightarrow{I}=\hat{x}_{1} \hat{x}_{1}+\hat{x}_{2} \hat{x}_{2}+\hat{x}_{3} \hat{x}_{3}=\hat{x} \hat{x}+\hat{y} \hat{y}+\hat{z} \hat{z}$

MoM Advances

- Dyad itself does not have any physical interpretation
- When it acts on a vector, it has meaningful interpretation
- (a) Scalar product with a vector gives another vector
- For example: Anterior scalar product with vector \vec{C}
- $\vec{C} \cdot \overleftrightarrow{D}=\left(C_{x} \hat{x}+C_{y} \hat{y}+C_{z} \hat{z}\right) \cdot \overleftrightarrow{D}=C_{x} \hat{x} \cdot \overleftrightarrow{D}+C_{y} \hat{y}$.
$\overleftrightarrow{D}+C_{z} \hat{z} \cdot \overleftrightarrow{D}$
- $C_{x} \hat{x} \cdot \overleftrightarrow{D}$
- $=C_{x} \hat{x} \cdot\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}+D_{y x} \hat{y} \hat{x}+\right.$ $\left.D_{y y} \hat{y} \hat{y}+D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right)$
- $=C_{x} \hat{x} \cdot\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}\right)$
- $=C_{x} D_{x x} \hat{x}+C_{x} D_{x y} \hat{y}+C_{x} D_{x z} \hat{z}$

MoM Advances

- $C_{y} \hat{y} \cdot \overleftrightarrow{D}$
- $=C_{y} \hat{y} \cdot\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}+D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+\right.$ $\left.D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right)$
- $=C_{y} \hat{y} \cdot\left(D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+D_{y z} \hat{y} \hat{z}\right)$
- $=C_{y} D_{y x} \hat{x}+C_{y} D_{y y} \hat{y}+C_{y} D_{y z} \hat{z}$
- $C_{z} \hat{z} \cdot \overleftrightarrow{D}$
- $=C_{z} \hat{z} \cdot\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}+D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+\right.$ $\left.D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right)$
- $=C_{z} \hat{z} \cdot\left(D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right)$
- $=C_{z} D_{z x} \hat{x}+C_{z} D_{z y} \hat{y}+C_{z} D_{z z} \hat{z}$
- Or in compact notation
- $\vec{C} \cdot \overleftrightarrow{D}=\sum_{i=1}^{3} \sum_{j=1}^{3} C_{i} D_{i j} \hat{x}_{j}$
- gives another vector

MoM Advances

- Posterior scalar product with vector \vec{C}
- $\overleftrightarrow{D} \cdot \vec{C}=\overleftrightarrow{D} \cdot\left(C_{x} \hat{x}+C_{y} \hat{y}+C_{z} \hat{z}\right)=\overleftrightarrow{D} \cdot C_{x} \hat{x}$ $+\overleftrightarrow{D} \cdot C_{y} \hat{y}+\overleftrightarrow{D} \cdot C_{z} \hat{z}$
- $\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}+D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+\right.$ $\left.D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right) \cdot C_{x} \hat{x}=$ $\left(D_{x x} \hat{x} \hat{x}+D_{y x} \hat{y} \hat{x}+D_{z x} \hat{z} \hat{x}\right) \cdot C_{x} \hat{x}=$ $D_{x x} C_{x} \hat{x}+D_{y x} C_{x} \hat{y}+D_{z x} C_{x} \hat{z}$

MoM Advances

- Similarly,
- $\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}+D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+\right.$ $\left.D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right) \cdot C_{y} \hat{y}=$ $\left(D_{x y} \hat{x} \hat{y}+D_{y y} \hat{y} \hat{y}+D_{z y} \hat{z} \hat{y}\right) \cdot C_{y} \hat{y}=$ $D_{x y} C_{y} \hat{x}+D_{y y} C_{y} \hat{y}+D_{z y} C_{y} \hat{z}$
- $\left(D_{x x} \hat{x} \hat{x}+D_{x y} \hat{x} \hat{y}+D_{x z} \hat{x} \hat{z}+D_{y x} \hat{y} \hat{x}+D_{y y} \hat{y} \hat{y}+\right.$ $\left.D_{y z} \hat{y} \hat{z}+D_{z x} \hat{z} \hat{x}+D_{z y} \hat{z} \hat{y}+D_{z z} \hat{z} \hat{z}\right) \cdot C_{z} \hat{z}=$ $\left(D_{x z} \hat{x} \hat{z}+D_{y z} \hat{y} \hat{z}+D_{z z} \hat{z} \hat{z}\right) \cdot C_{z} \hat{z}=D_{x z} C_{z} \hat{x}+D_{y z} C_{z} \hat{y}+$ $D_{z z} C_{z} \hat{Z}$
- Or in compact notation
- $\vec{C} \cdot \overleftrightarrow{D}=\sum_{i=1}^{3} \sum_{j=1}^{3} D_{j i} C_{i} \hat{x}_{j}$

MoM Advances

- Dyad \overleftrightarrow{D} anterior and posterior scalar product with vector \vec{C}
- gives different vectors
- Anterior vector product with vector \vec{C}
- $\vec{C} \times \overleftrightarrow{D}=(\vec{C} \times \vec{A}) \vec{B}$
- Posterior vector product with vector \vec{C}
- $\overleftrightarrow{D} \times \vec{C}=\vec{A}(\vec{B} \times \vec{C})$
- Dyad \overleftrightarrow{D} anterior and posterior vector product with vector \vec{C}
- gives different dyads

MoM Advances

- How to get this equation?
$\stackrel{\stackrel{\rightharpoonup}{G}}{E J}\left(\vec{k}_{t}, z, z^{\prime}\right)=-V_{\text {horizon }}^{T E}\left(z, z^{\prime}\right)\left(\hat{k}_{t} \times \hat{z}\right)\left(\hat{k}_{t} \times \hat{z}\right)-V_{\text {horizon }}^{T M}\left(z, z^{\prime}\right)\left(\hat{k}_{t}\right)\left(\hat{k}_{t}\right)$
- S.-G. Pan and I. Wolff, "Scalarization of Dyadic Spectral Green's Functions and Network Formalism for Three-Dimensional Full-Wave Analysis of Planar Lines and Antennas," IEEE Trans. Microw. Theory and Tech., Vol. 42, no. 11, Nov. 1994, pp. 2118-2127
- Steps:
- Maxwell's equations for fields,
- Green's function dyadic version of Maxwell's equations,
- spectral domain Green's function dyadic version of Maxwell's equations in spectral domain

MoM Advances

- Scalarization of dyadic spectral Green's functions so that they can be determined from two sets of \mathbf{z}-dependent inhomogenous transmission line equations
- How to convert multi-layered structure to TE/TM circuit models? How to find the length of the transmission lines?
- Height of the substrate for every layer decides the length of that substrate
- For example the substrate height is h_{1} for layer 1 then the transmission line length would be h_{1}

MoM Advances

- In the equivalent circuit model current source is 1 A . Why?
- We are interested in finding the Green's function
- $\vec{E}(\vec{r})=\int_{V} \vec{G}_{E J}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e}\left(\vec{r}^{\prime}\right) d \vec{r}^{\prime}$
- What is D_{TE} and D_{TM} ?
- Denominator of the equivalent TE and TM impedance

$$
Z_{e q}^{T E}=k_{0} \eta_{0} \frac{1}{D_{T E}} \quad Z_{e q}^{T M}=\frac{\eta_{0} \beta_{0}}{k_{0} D_{T M}}
$$

- How do we find them?

$$
Z_{e q}^{T E}=\frac{Z_{d}^{T E} Z_{u}^{T E}}{Z_{d}^{T E}+Z_{u}^{T E}} ; Z_{e q}^{T M}=\frac{Z_{d}^{T M} Z_{u}^{T M}}{Z_{d}^{T M}+Z_{u}^{T M}}
$$

MoM Advances

- The far field radiation pattern of rectangular PMA after transforming to spherical coordinates may be obtained as follows:

$$
\begin{aligned}
E_{\theta}= & \frac{j \exp \left(-j \beta_{0} r\right)}{\lambda r}\left[\cos \phi \tilde{E}_{x}+\sin \phi \tilde{E}_{y}\right] \\
E_{\phi}= & \frac{j \exp \left(-j \beta_{0} r\right)}{\lambda r}\left[-\sin \phi \cos \theta \tilde{E}_{x}+\cos \phi \cos \theta \tilde{E}_{y}\right] \\
\tilde{E}_{x}= & \tilde{G}_{E J}^{x x} \tilde{J}_{x}+\tilde{G}_{E J}^{x y} \tilde{J}_{y} \quad \tilde{E}_{y}=\tilde{G}_{E J}^{y x} \tilde{J}_{x}+\tilde{G}_{E J}^{y y} \tilde{J}_{y} \\
& \vec{E}(\vec{r})=\int_{V} \vec{G}_{E J}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e}\left(\vec{r}^{\prime}\right) d \vec{r}^{\prime}
\end{aligned}
$$

MoM Advances

- Note that spectral dyadic Green's functions are functions of $\vec{k}_{t}=k_{x} \hat{x}+k_{y} \hat{y}$.
- It can be shown that

$$
k_{x}=k_{0} \sin \theta \cos \phi ; k_{y}=k_{0} \sin \theta \sin \phi ;\left|\vec{k}_{t}\right|=k_{0} \sin \theta
$$

- The directivity of PRMA may be obtained as

$$
\begin{aligned}
D(\theta, \phi)=\frac{U(\theta, \phi)}{U_{\text {avg }}}= & \frac{4 \pi U(\theta, \phi)}{\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} U(\theta, \phi) \sin \theta d \theta d \phi} \\
& U(\theta, \phi)=\frac{|E(\theta, \phi)|^{2}}{\eta_{0}} r^{2}=\frac{\left|E_{\theta}\right|^{2}+\left|E_{\phi}\right|^{2}}{\eta_{0}} r^{2}
\end{aligned}
$$

MoM Advances

- Electric Field Integral Equation

$$
\begin{gathered}
\hat{z} \times\left(\vec{E}^{\text {sourre }}(\vec{r})+\vec{E}^{\text {radiated }}(\vec{r})\right)=0 \\
\hat{z} \times\left(\vec{E}^{\text {source }}(\vec{r})+\int_{\text {pacth }} \overrightarrow{G J}_{E J}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e}\left(\vec{r}^{\prime}\right) d \vec{r}^{\prime}\right)=0 \\
\vec{J}_{e}\left(x^{\prime}, y^{\prime}\right)=J_{x}\left(x^{\prime}, y^{\prime}\right) \hat{x}+J_{y}\left(x^{\prime}, y^{\prime}\right) \hat{y} \\
\vec{G}_{E J}\left(x, y ; x^{\prime}, y^{\prime}\right)=G_{E J}^{x x}\left(x, y ; x^{\prime}, y^{\prime}\right) \hat{x} \hat{x}+G_{E J}^{x y}\left(x, y ; x^{\prime}, y^{\prime}\right) \hat{x} \hat{y}+G_{E J}^{\text {sx }}\left(x, y ; x^{\prime}, y^{\prime}\right) \hat{y} \hat{x}+G_{E J}^{v y}\left(x, y ; x^{\prime}, y^{\prime}\right) \hat{y} \hat{y}
\end{gathered}
$$

MoM Advances

- Using dyadic analysis, one may convert the vector EFIE into scalar EFIE as follows
$E_{x}^{\text {suurce }}(x, y)=-\iint_{p a c t h} G_{E J}^{x x}\left(x, y ; x^{\prime}, y^{\prime}\right) J_{x}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}-\iint_{p a t c h} G_{E J}^{x y}\left(x, y ; x^{\prime}, y^{\prime}\right) J_{y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$
$E_{y}^{\text {suurce }}(x, y)=-\iint_{\text {pacch }} G_{E J}^{y x}\left(x, y ; x^{\prime}, y^{\prime}\right) J_{x}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}-\iint_{\text {pacch }} G_{E J}^{y y}\left(x, y^{\prime} ; x^{\prime}, y^{\prime}\right) J_{y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}$

MoM Advances

- Since we have derived spectral dyadic Green's functions in the previous section, we may take its inverse Fourier transform as follows

$$
G_{E J}^{p q}\left(x, y ; x^{\prime}, y^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{G}_{E J}^{p q}\left(k_{x}, k_{y}\right) e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} d k_{x} d k_{y}
$$

where variables p, q may be either x or y

MoM Advances

- Substituting this in the scalar EFIE, we have,

$$
\begin{aligned}
& E_{x}^{\text {source }}(x, y) \\
& =-\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\iint_{\text {patch }} \tilde{G}_{E J}^{x x}\left(k_{x}, k_{y}\right) J_{x}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}+\iint_{p a t c h} \tilde{G}_{E J}^{x y}\left(k_{x}, k_{y}\right) J_{y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}\right) e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} d k_{x} d k_{y} \\
& E_{y}^{\text {source }}(x, y) \\
& =-\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\iint_{\text {patch }} \tilde{G}_{E J}^{y x}\left(k_{x}, k_{y}\right) J_{x}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}+\iint_{\text {patch }} \tilde{G}_{E J}^{y y}\left(k_{x}, k_{y}\right) J_{y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}\right) e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} d k_{x} d k_{y}
\end{aligned}
$$

MoM Advances

- As usual in MoM, we may approximate the unknown current density in terms of known basis functions

$$
J_{x}(x, y)=\sum_{n=1}^{N} I_{n}^{x} B_{n}^{x}(x, y) ; J_{y}(x, y)=\sum_{n=1}^{N} I_{n}^{y} B_{n}^{y}(x, y)
$$

- where piecewise sinusoidal (PWS) basis functions used are

$$
\begin{aligned}
& B_{n}^{x}(x, y)=\frac{\sin \left[k_{s}\left(\Delta x-\left|x-x_{n}\right|\right)\right]}{\sin \left(k_{s} \Delta x\right)} ;\left|y-y_{n}\right| \leq \frac{\Delta y}{2},\left|x-x_{n}\right| \leq \Delta x \\
& B_{n}^{y}(x, y)=\frac{\sin \left[k_{s}\left(\Delta y-\left|y-y_{n}\right|\right)\right]}{\sin \left(k_{s} \Delta y\right)} ;\left|x-x_{n}\right| \leq \frac{\Delta x}{2},\left|y-y_{n}\right| \leq \Delta y
\end{aligned}
$$

MoM Advances

- Putting this in the scalar EFIE, we have,

$$
\begin{aligned}
& -4 \pi^{2} E_{x}^{\text {suurce }}(x, y)= \\
& \sum_{n=1}^{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\iint_{S_{\text {source }}} \tilde{G}_{E J}^{x x}\left(k_{x}, k_{y}\right) I_{n}^{x} B_{n}^{x}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}+\iint_{S_{\text {source }}} \tilde{G}_{E J}^{x y}\left(k_{x}, k_{y}\right) I_{n}^{y} B_{n}^{y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}\right) e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} d k_{x} d k_{y} \\
& -4 \pi^{2} E_{y}^{\text {source }}(x, y)= \\
& \sum_{n=1}^{N} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\iint_{S_{\text {source }}} \tilde{G}_{E J}^{y x}\left(k_{x}, k_{y}\right) I_{n}^{x} B_{n}^{x}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}+\iint_{S_{\text {saurce }}} \tilde{G}_{E J}^{y y}\left(k_{x}, k_{y}\right) I_{n}^{y} B_{n}^{y}\left(x^{\prime}, y^{\prime}\right) d x^{\prime} d y^{\prime}\right) e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} d k_{x} d k_{y}
\end{aligned}
$$

