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 Spectral domain MoM
 It could be expressed in the MoM matrix form as follows
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 where
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and
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 First we have a double infinite integration which may be 
converted into a single infinite integration by the following 
transformation in the variables

 In the RHS       can be considered as a part of the integrand 
itself
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 When the integrand has a pole say for

 Special care must be taken while integrating
 We may divide the integration into three parts as follows

δ (typical value is 0.001 k0) is small shift from the pole location
 I1 can be integrated as usual
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 I2 includes the pole in the integrand and hence can be 
integrated as follows

 where                              are the numerator and denominator 
function of the integrand

 Assume the pole is complex then it will no longer on the real 
line but shifted from it hence
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 Using Taylor series expansion of the denominator of the 
above integrand, we have, 

 Hence the integration becomes
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 Also

 For real root, the above equation reduces to

 How do you find this?
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 Digression:
 Improper integral along real axis:

 where the function f(x) has pole at x=x0

 The integral can be carried out over a contour in complex 
plane  
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 Fig. An improper integral 
along the real axis, analytically 
continued in the upper half
z-plane for integration as
a contour integral
(a) Contour 
(b) Deformed to exclude the pole
(c) Deformed to include the
pole 

(a)

(b)

(c)

-R Rx=x0
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Wirtinger Calculus
 Complex derivative of a complex function f(z)

 For a function f(z) of a complex variable z=x+jy Є C, x,y Є
R, 

 its derivative w.r.t. z and z* are defined as
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 For example,

 Analytic function
 A function f(z) is said to be analytic at a point z=z0 if the 

derivative           exists at z0 and in some small region around 
z0
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 Similar to definition of complex variable f(z) may be written 
as a sum of two functions, each of which is a function of two 
real variables x and y

 Note that                                                                             
exists if

 It is also called as Cauchy-Riemann condition 
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 For example,

 Cauchy-Riemann condition is satisfied 
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 The function f(x) is analytic is continued to the upper half 
plane Im(z)≥0

 Its analytic continuation is called f(z) and is obtained by 
replacing the real variable x by the complex variable z 

 Therefore,

 where Cs is a semicircle of very large radius (see Fig. (a))
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 Conditions to be satisfied for the above formula to work are:
 Assumption 1:

F(z) should be analytic everywhere in the upper half plane 
defined by Im(z)≥0 except for a finite number of isolated 
singular points

 Assumption 2:

F(z) should vanish strongly as 1/z2 for 
which means that the integrand approach  zero over the 
semicircle Cs and the contribution of the arc Cs to the 
integral vanishes

0z    
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 To evaluate the integral the integration along the closed 
contour is now deformed to exclude the pole at z=z0=x0

(see Fig. (b))
 In the vicinity of the isolated pole the integrand is analytic so 

that the deformation around the pole is in the form of 
semicircle C0 of vanishingly small radius
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 Cauchy integral formula: 
 If a function f(z) is analytic on a closed contour C and within 

the interior region bounded by it then
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 Here our pole is located outside the closed contour, hence
 LHS is zero

 Because of assumption 2, we have,

 Hence
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 In the limit

 f(z) is a function which has a pole at z=z0

 Hence we may write

 Using Taylor Series expansion of d(z) for z near z0
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 We have

 Therefore

 Substitute  
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 We can also consider the Fig. (c) case also
 In this case the pole z=x0 is also included in the closed 

contour, hence

 For 

   

       
0

0 0

2

S

o
C

z R

R C z C

f z dz f z

Lim f x dx f z dz f x dx f z dz

R









 



 
    

  



   



   
        

 0

0

0 0 0
' 'z z

n z n z
f z sidue f z

z z d z d z
 





MoM Advances

1/29/2021MoM by Prof. Rakhesh Singh Kshetrimayum214

 Therefore

 Let us find the second term on RHS
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 Hence

 Finally
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 For real root, the above equation reduces to

 Since for our case 

 The inner integral of is an infinite integral but it may be 
truncated at around 200 k0

 This value may be decided by doing convergence analysis 
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