MoM Advances

- Spectral domain MoM
- It could be expressed in the MoM matrix form as follows

$$
\begin{aligned}
V_{m}^{x} & =\sum_{n=1}^{N}\left(I_{n}^{x} Z_{n m}^{x x}+I_{n}^{y} Z_{n m}^{x y}\right), m=1,2, \ldots, N \\
V_{m}^{y} & =\sum_{n=1}^{N}\left(I_{n}^{x} Z_{n m}^{y x}+I_{n}^{y} Z_{n m}^{y y}\right), m=1,2, \ldots, N
\end{aligned}
$$

MoM Advances

- where

$$
\begin{aligned}
& Z_{n m}^{p q}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \iint_{S_{\text {seres }}} \iint_{E_{\text {ece }}} \tilde{G}_{E J}^{p q}\left(k_{x}, k_{y}\right) B_{n}^{p}(x, y) B_{m}^{q}\left(x^{\prime}, y^{\prime}\right) e^{-j k_{x}\left(x-x^{-x}\right)} e^{-j k_{x}\left(y-y^{\prime}\right)} d x d y d x^{\prime} d y^{\prime} d k_{x} d k_{y}
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{\tilde{B}_{n}^{p}\left(k_{x}, k_{y}\right)\right\}^{*} \tilde{G}_{E J}^{p q}\left(k_{x}, k_{y}\right) \tilde{B}_{n}^{q}\left(k_{x}, k_{y}\right) d k_{x} d k_{y} \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{B}_{n}^{p}\left(-k_{x},-k_{y}\right) \tilde{G}_{E J}^{p q}\left(k_{x}, k_{y}\right) \tilde{B}_{n}^{q}\left(k_{x}, k_{y}\right) d k_{x} d k_{y}
\end{aligned}
$$

MoM Advances

 and$$
\begin{aligned}
& V_{m}^{p}=-4 \pi^{2} \iint_{S_{\text {test }}} E_{p}^{\text {source }}(x, y) B_{m}^{p}(x, y) d x d y \\
& =-\iint_{S_{\text {test }}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{E}_{p}^{\text {source }}\left(k_{x}, k_{y}\right) e^{-j k_{x} x} e^{-j k_{y} y} B_{m}^{p}(x, y) d x d y d k_{x} d k_{y} \\
& =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{\iint_{S_{\text {test }}} B_{m}^{p}(x, y) e^{j k_{x} x} e^{j k_{y} y} d x d y\right\} \tilde{E}_{p}^{\text {source }}\left(k_{x}, k_{y}\right) d k_{x} d k_{y} \\
& =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left\{\tilde{B}_{m}^{p}\left(k_{x}, k_{y}\right)\right\}^{*} \tilde{E}_{p}^{\text {source }}\left(k_{x}, k_{y}\right) d k_{x} d k_{y} \\
& =-\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{B}_{m}^{p}\left(-k_{x},-k_{y}\right) \tilde{E}_{p}^{\text {source }}\left(k_{x}, k_{y}\right) d k_{x} d k_{y}
\end{aligned}
$$

MoM Advances

- First we have a double infinite integration which may be converted into a single infinite integration by the following transformation in the variables

$$
\begin{aligned}
& k_{x}=k_{\rho} \cos \alpha, k_{y}=k_{\rho} \sin \alpha \\
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(\bullet) d k_{x} d k_{y}=\int_{0}^{2 \pi} \int_{0}^{\infty}(\bullet) k_{\rho} d k_{\rho} d \alpha
\end{aligned}
$$

- In the RHS k_{ρ} can be considered as a part of the integrand itself

MoM Advances

- When the integrand has a pole say for

$$
k_{\rho}=k_{\rho 0} ; k_{0} \leq k_{\rho 0} \leq \sqrt{\varepsilon_{r}} k_{0}
$$

- Special care must be taken while integrating
- We may divide the integration into three parts as follows
$\int_{0}^{2 \pi} \int_{0}^{\infty}(\bullet) d k_{\rho} d \alpha=\int_{0}^{2 \pi} \int_{0}^{k_{\rho}^{0}-\delta}(\bullet) d k_{\rho} d \alpha+\int_{0}^{2 \pi} \int_{k_{\rho}^{k_{\rho}^{0}-\delta}}^{k_{\rho}^{0}+\delta}(\bullet) d k_{\rho} d \alpha+\int_{0}^{2 \pi} \int_{k_{\rho}^{\sigma_{\rho}^{+}}+\delta}^{\infty}(\bullet) d k_{\rho} d \alpha=I_{1}+I_{2}+I_{3}$
δ (typical value is $0.001 \mathrm{k}_{0}$) is small shift from the pole location
- I_{1} can be integrated as usual

MoM Advances

- I_{2} includes the pole in the integrand and hence can be integrated as follows

$$
\int_{k_{\rho}^{0}-\delta}^{k_{\rho}^{0}+\delta}(\bullet) d k_{\rho}=\int_{k_{\rho}^{0}-\delta}^{k_{\rho}^{0}+\delta} \frac{f\left(k_{\rho}\right)}{g\left(k_{\rho}\right)} d k_{\rho}
$$

- where $f\left(k_{\rho}\right), g\left(k_{\rho}\right)$ are the numerator and denominator function of the integrand
- Assume the pole is complex then it will no longer on the real line but shifted from it hence

$$
k_{\rho}=k_{\rho}^{0}-j \gamma
$$

MoM Advances

- Using Taylor series expansion of the denominator of the above integrand, we have,
$\because g\left(k_{\rho}^{0}-j \gamma\right)=0$
$g\left(k_{\rho}\right) \cong g\left(k_{\rho}^{0}-j \gamma\right)+\left(k_{\rho}-k_{\rho}^{0}+j \gamma\right) g^{\prime}\left(k_{\rho}^{0}-j \gamma\right)=\left(k_{\rho}-k_{\rho}^{0}+j \gamma\right) g^{\prime}\left(k_{\rho}^{0}-j \gamma\right)$
- Hence the integration becomes

$$
I_{2}=\int_{k_{\rho}^{0}-j \gamma-\delta}^{k_{\rho}^{0}-j \gamma+\delta} \frac{f\left(k_{\rho}\right)}{g\left(k_{\rho}\right)} d k_{\rho}=\frac{1}{g^{\prime}\left(k_{\rho}^{0}-j \gamma\right)} \int_{k_{\rho}^{0}-\delta}^{k_{\rho}^{0}+\delta} \frac{f\left(k_{\rho}\right)}{\left(k_{\rho}-k_{\rho}^{0}+j \gamma\right)} d k_{\rho}
$$

MoM Advances

- Also

$$
\begin{aligned}
& \because f\left(k_{\rho}\right) \approx f\left(k_{\rho}^{0}-j \gamma\right) \\
& I_{2}=\frac{f\left(k_{\rho}^{0}-j \gamma\right.}{g^{\prime}\left(k_{\rho}^{0}-j \gamma\right)} \int_{k_{\rho}^{0}-j \gamma-\delta}^{k_{\rho}^{0}-j \gamma+\delta} \frac{1}{\left(k_{\rho}-k_{\rho}^{0}+j \gamma\right)} d k_{\rho}
\end{aligned}
$$

- For real root, the above equation reduces to

$$
\int_{k_{\rho}^{0}-\delta}^{k_{\rho}^{0}+\delta} \frac{f\left(k_{\rho}\right)}{g\left(k_{\rho}\right)} d k_{\rho}=\frac{j \pi f\left(k_{\rho}^{0}\right)}{g^{\prime}\left(k_{\rho}^{0}\right)}
$$

- How do you find this?

MoM Advances

- Digression:
- Improper integral along real axis:

$$
I=\int_{-\infty}^{\infty} f(x) d x
$$

- where the function $f(x)$ has pole at $x=x_{0}$

$$
I=\operatorname{Lim} \int_{R \rightarrow \infty^{-R}}^{R} f(x) d x
$$

- The integral can be carried out over a contour in complex plane

MoM Advances

- Fig. An improper integral along the real axis, analytically ${ }^{-R}$ continued in the upper half z-plane for integration as a contour integral
(a) Contour

(b) Deformed to exclude the pole
(c) Deformed to include the pole

MoM Advances

Wirtinger Calculus

- Complex derivative of a complex function $f(z)$
- For a function $f(z)$ of a complex variable $z=x+j y \in C, x, y \in$ R,
- its derivative w.r.t. z and z^{*} are defined as

$$
\frac{\partial f(z)}{\partial z}=\frac{1}{2}\left(\frac{\partial f(z)}{\partial x}-j \frac{\partial f(z)}{\partial y}\right) ; \frac{\partial f(z)}{\partial z^{*}}=\frac{1}{2}\left(\frac{\partial f(z)}{\partial x}+j \frac{\partial f(z)}{\partial y}\right)
$$

MoM Advances

- For example,

$$
\begin{aligned}
& f(z)=a z, \frac{\partial f(z)}{\partial z}=a, \frac{\partial f(z)}{\partial z}=0 ; \\
& f(z)=a z^{*}, \frac{\partial f(z)}{\partial z}=0, \frac{\partial(z)}{\partial{ }^{*}}=a ; \\
& f(z)=z^{*}, \frac{\partial f(z)}{\partial z}=z^{*}, \frac{\partial f(z)}{\partial z^{*}}=z
\end{aligned}
$$

- Analytic function
- A function $\mathrm{f}(\mathrm{z})$ is said to be analytic at a point $\mathrm{z}=\mathrm{z}_{0}$ if the derivative $f^{\prime}(z)$ exists at z_{0} and in some small region around z_{0}

MoM Advances

- Similar to definition of complex variable $f(z)$ may be written as a sum of two functions, each of which is a function of two real variables x and y

$$
f(z)=u(x, y)+j v(x, y)
$$

- Note that $f^{\prime}(z)=\frac{\partial f(z)}{\partial z}=\frac{1}{2}\left(\frac{\partial f(z)}{\partial x}-j \frac{\partial f(z)}{\partial y}\right)$

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} ; \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

- It is also called as Cauchy-Riemann condition

MoM Advances

- For example,

$$
f(z)=a z, \frac{\partial f(z)}{\partial z}=a
$$

- Cauchy-Riemann condition is satisfied

$$
u=a x, v=a y ; \frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=a ; \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=0
$$

MoM Advances

- The function $f(x)$ is analytic is continued to the upper half plane $\operatorname{Im}(\mathrm{z}) \geq 0$
- Its analytic continuation is called $\mathrm{f}(\mathrm{z})$ and is obtained by replacing the real variable x by the complex variable z
- Therefore,

$$
{\underset{C}{\mid}}^{f} f(z) d z=\operatorname{Lim}_{R \rightarrow \infty}\left[\int_{-R}^{R} f(x) d x+\int_{C_{S}} f(z) d z\right]
$$

- where C_{s} is a semicircle of very large radius (see Fig. (a))

MoM Advances

- Conditions to be satisfied for the above formula to work are:
- Assumption 1:
$\mathrm{F}(\mathrm{z})$ should be analytic everywhere in the upper half plane defined by $\operatorname{Im}(\mathrm{z}) \geq 0$ except for a finite number of isolated singular points
- Assumption 2:
$\mathrm{F}(\mathrm{z})$ should vanish strongly as $1 / \mathrm{z}^{2}$ for $|z| \rightarrow \infty, 0 \leq \theta \leq \pi$ which means that the integrand approach zero over the semicircle Cs and the contribution of the arc Cs to the integral vanishes

MoM Advances

- To evaluate the integral the integration along the closed contour is now deformed to exclude the pole at $\mathrm{z}=\mathrm{z}_{0}=\mathrm{x}_{0}$ (see Fig. (b))
- In the vicinity of the isolated pole the integrand is analytic so that the deformation around the pole is in the form of semicircle C_{0} of vanishingly small radius

$$
{\underset{C}{C}}^{f} f(z) d z=\operatorname{Lim}_{R \rightarrow \infty}\left[\int_{-R}^{z_{0}-\rho} f(x) d x+\int_{C_{0}} f(z) d z+\int_{z_{0}+\rho}^{R} f(x) d x+\int_{C_{S}} f(z) d z\right]
$$

MoM Advances

- Cauchy integral formula:
- If a function $f(z)$ is analytic on a closed contour C and within the interior region bounded by it then

$$
\begin{aligned}
& \int_{C} \frac{f(z)}{z-z_{0}} d z=2 \pi j \times \text { residue of }
\end{aligned} f(z)
$$

MoM Advances

- Here our pole is located outside the closed contour, hence
- LHS is zero
- Because of assumption 2, we have, $\int_{C_{S}} f(z) d z=0$
- Hence

$$
0=\operatorname{Lim}_{R \rightarrow \infty}\left[\int_{-R}^{z_{0}-\infty} f(x) d x+\int_{C_{0}} f(z) d z+\int_{z_{0}+\rho}^{R} f(x) d x\right]
$$

MoM Advances

- In the limit $\rho \rightarrow 0 \quad-\operatorname{Lim}^{\rho \rightarrow 0^{C_{0}}} \int_{-\infty} f(z) d z=\int_{-\infty}^{\infty} f(x) d x$
- $f(z)$ is a function which has a pole at $\mathrm{z}=\mathrm{z}_{0}$
- Hence we may write

$$
f(z)=\frac{n(z)}{d(z)} ;\left.d(z)\right|_{z=z_{0}}=0
$$

- Using Taylor Series expansion of $\mathrm{d}(\mathrm{z})$ for z near z_{0}

$$
d(z)=d\left(z_{0}\right)+\left(z-z_{0}\right) d^{\prime}\left(z_{0}\right)=\left(z-z_{0}\right) d^{\prime}\left(z_{0}\right)
$$

MoM Advances

- We have $f(z)=\frac{n(z)}{\left(z-z_{0}\right) d^{\prime}\left(z_{0}\right)}$
- Therefore

$$
\operatorname{Lim}_{\rho \rightarrow 0^{C_{0}}} \int_{\rho \rightarrow 0} \frac{n(z)}{\left(z-z_{0}\right) d^{\prime}\left(z_{0}\right)} d z=-\operatorname{Lim}_{\rho \rightarrow 0} \frac{1}{d^{\prime}\left(z_{0}\right)_{C_{0}}} \int_{\left(z-z_{0}\right)}^{n(z)} d z
$$

- Substitute

$$
\begin{aligned}
& z=z_{0}+\rho e^{j \theta} \\
& d z=j \rho e^{j \theta} d \theta
\end{aligned}
$$

$-\operatorname{Lim}_{\rho \rightarrow 0} \frac{1}{d^{\prime}\left(z_{0}\right)} \int_{\pi}^{0} \frac{n\left(z_{0}+\rho e^{j \theta}\right)}{\left(\rho e^{j \theta}\right)} j \rho e^{j \theta} d \theta=-j \frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)} \int_{\pi}^{0} d \theta=j \pi \frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)}$

MoM Advances

- We can also consider the Fig. (c) case also
- In this case the pole $\mathrm{z}=\mathrm{x}_{0}$ is also included in the closed contour, hence

$$
\prod_{C} f(z) d z=2 \pi f\left(z_{o}\right)
$$

$$
=\operatorname{Lim}_{R \rightarrow \infty}\left[\int_{-R}^{z_{0}-\rho} f(x) d x+\int_{C_{0}} f(z) d z+\int_{z_{0}+\rho}^{R} f(x) d x+\int_{C_{S}} f(z) d z\right]
$$

- For

$$
f(z)=\frac{n(z)}{\left(z-z_{0}\right) d^{\prime}\left(z_{0}\right)} ;\left.\operatorname{Residue}(f(z))\right|_{z=z_{0}}=\frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)}
$$

MoM Advances

- Therefore $2 \pi j \frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)}=\underset{R \rightarrow \infty}{\operatorname{Lim}}\left[\int_{-R}^{z_{0}-\rho} f(x) d x+\int_{C_{0}} f(z) d z+\int_{z_{0}+\rho}^{R} f(x) d x\right]$

$$
=\int_{-R}^{R} f(x) d x+\operatorname{Lim}_{R \rightarrow \infty}\left[\int_{C_{0}} f(z) d z\right]
$$

- Let us find the second term on RHS

$$
\operatorname{Lim}_{\rho \rightarrow 0^{C_{0}}} \int_{\rho} \frac{n(z)}{\left(z-z_{0}\right) d^{\prime}\left(z_{0}\right)} d z=\operatorname{Lim}_{\rho \rightarrow 0} \frac{1}{d^{\prime}\left(z_{0}\right)} \int_{C_{0}} \frac{n(z)}{\left(z-z_{0}\right)} d z
$$

MoM Advances

- Hence

$$
\begin{aligned}
& z=z_{0}+\rho e^{j \theta} \\
& d z=j \rho e^{j \theta} d \theta
\end{aligned}
$$

$\operatorname{Lim}_{\rho \rightarrow 0} \frac{1}{d^{\prime}\left(z_{0}\right)} \int_{\pi}^{2 \pi} \frac{n\left(z_{0}+\rho e^{i \theta}\right)}{\left(\rho e^{i \theta}\right)} j \rho e^{j \theta} d \theta=j \frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)} \int_{\pi}^{2 \pi} d \theta=j \pi \frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)}$

- Finally

$$
\int_{-R}^{R} f(x) d x=\pi j \frac{n\left(z_{0}\right)}{d^{\prime}\left(z_{0}\right)}
$$

MoM Advances

- For real root, the above equation reduces to

$$
\int_{k_{\rho}^{0}-\delta}^{k_{\rho}^{0}+\delta} \frac{f\left(k_{\rho}\right)}{g\left(k_{\rho}\right)} d k_{\rho}=\frac{j \pi f\left(k_{\rho}^{0}\right)}{g^{\prime}\left(k_{\rho}^{0}\right)}
$$

- Since for our case Integrand $=\frac{n(z)}{d(z)}=\frac{f\left(k_{\rho}\right)}{g\left(k_{\rho}\right)}$
- The inner integral of is an infinite integral but it may be truncated at around $200 \mathrm{k}_{0}$
- This value may be decided by doing convergence analysis

