- Spatial domain MPIE MoM
- Spectral domain Mixed potential dyadic Green's functions
- It has been reported in the literature that MPIE MoM is more efficient than EFIE
- since the Green's functions in the MPIE formulation are less singular.
- The magnetic field intensity can be expressed in terms of magnetic vector potential

$$\mu \vec{H} = \nabla \times \vec{A}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

• For time harmonic fields the relation between the electric field and electric potential and magnetic vector potential is given as follows

$$\vec{E} = -j\omega\vec{A} - \nabla\Phi$$

• For x-directed current source, the two mixed potential spectral Green's function components are

$$\tilde{G}_{xx}^{A} = \frac{1}{j\omega\mu_{0}} V_{horizon}^{TE} = \frac{1}{j\omega\mu_{0}} Z_{eq}^{TE} = \frac{k_{0}\eta_{0}}{j\omega\mu_{0}} \frac{1}{D_{TE}} = \frac{1}{jD_{TE}}$$

$$\tilde{G}^{\Phi} = \frac{j\omega\varepsilon_0}{k_{\rho}^2} \left(V_{horizon}^{TM} - V_{horizon}^{TE} \right) = \frac{j\omega\varepsilon_0}{k_{\rho}^2} \left(Z_{eq}^{TM} - V_{eq}^{TE} \right)$$
$$= \frac{j\omega\varepsilon_0\eta_0}{k_{\rho}^2} \left(\frac{k_0}{D_{TE}} - \frac{\beta_0}{k_0D_{TM}} \right) = \frac{j}{k_{\rho}^2} \left(\frac{k_0^2 D_{TM} - \beta_0 D_{TE}}{D_{TE} D_{TM}} \right)$$

- Spatial domain dyadic Green's functions
- In order to obtain the spatial domain mixed potential Green's functions, we may apply the Fourier-Bessel transform of spectral domain mixed potential Green's functions as follows

$$G_{xx}^{A} = \int_{0}^{\infty} \tilde{G}_{xx}^{A} J_{0}\left(k_{\rho}\rho\right) k_{\rho} dk_{\rho}; G^{\Phi} = \int_{0}^{\infty} \tilde{G}^{\Phi} J_{0}\left(k_{\rho}\rho\right) k_{\rho} dk_{\rho}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

- where J₀ is the Bessel function
- How?
- we may take its inverse Fourier transform as follows

$$G_{EJ}^{pq}\left(x,y;x',y'\right) = \frac{1}{\left(2\pi\right)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{G}_{EJ}^{pq}\left(k_{x},k_{y}\right) e^{-jk_{x}\left(x-x'\right)} e^{-jk_{y}\left(y-y'\right)} dk_{x} dk_{y}$$

where variables p,q may be either x or y

• First we have a double infinite integration which may be converted into a single infinite integration by the following transformation in the variables

• Substitute

$$k_x = k_\rho \cos \alpha, k_y = k_\rho \sin \alpha; k_\rho = k_\rho \cos \alpha \hat{x} + k_\rho \sin \alpha \hat{y} = k_x \hat{x} + k_y \hat{y}$$

• Hence

$$G_{EJ}^{pq}(\vec{r},\vec{r}') = \frac{1}{(2\pi)^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left(\tilde{G}_{EJ}^{pq}(k,z,z') e^{-j\vec{k}\cdot(\vec{r}-\vec{r}')} \right) d\vec{k}$$
$$= \frac{1}{2\pi} \int_{0}^{\infty} \tilde{G}_{EJ}^{pq}(k_{\rho},z,z') \left(\frac{1}{2\pi} \int_{0}^{2\pi} e^{-j\vec{k}_{\rho}\cdot(\vec{r}-\vec{r}')} d\alpha \right) k_{\rho} dk_{\rho}$$

$$=\frac{1}{2\pi}\int_{0}^{\infty}\tilde{G}_{EJ}^{pq}\left(k_{\rho},z,z'\right)J_{0}\left(k_{\rho}\left|\vec{r}-\vec{r}'\right|\right)k_{\rho}dk_{\rho}$$

MoM by Prof. Rakhesh Singh Kshetrimayum

2/3/2021

- Spatial domain MPIE MoM
- Mixed potential integral equation (MPIE) for x-directed horizontal electric dipole can be expressed in terms of the mixed potential Green's functions
- It is basically an expression of the continuity of the tangential component of the electric field

•
$$\hat{z} \times \vec{E}^{inc} = -\hat{z} \times \int_{S} \quad \overleftrightarrow{G}_{EJ}(\vec{r}, \vec{r}') \cdot \vec{J}_{S}(\vec{r}') d\vec{s}'$$

• We need to replace the scattered field in the RHS by using the following relation with the potentials

• Since

•
$$\vec{E} = -j\omega\vec{A} - \nabla\Phi$$

• and \vec{A} satisfies Helmholtz wave equation

•
$$(\nabla^2 + k^2)\vec{A} = -\mu\vec{J}$$

- and hence $\vec{A}(\vec{r}) = \int_{S} \vec{G}^{A}(\vec{r},\vec{r}') \cdot \vec{J}_{S}(\vec{r}') d\vec{s}'$
- In electrostatics, $V(\vec{r}) = \int_{S} G^{\Phi}(\vec{r}, \vec{r}') q_{S}(\vec{r}') d\vec{s}'$ $\hat{z} \times \vec{E}^{inc} = \hat{z} \times \left[j\omega \int_{S} \vec{G}^{A} \cdot \vec{J}_{S} dS' + \nabla \int_{S} G^{\Phi} q_{S} dS' \right]$

• As usual in MoM, we may approximate the unknown current and charge in terms of some known basis functions

$$\vec{J}_{S} \cong \sum_{i=1}^{N} \alpha_{i} \vec{B}_{i}; q_{S} \cong \sum_{i=1}^{N} \alpha_{i} \left(-\frac{\nabla \bullet \vec{B}_{i}}{j\omega} \right)$$

- Note that here Bi is the basis function not to be confused with magnetic flux density
- Equation continuity $\nabla \cdot \vec{J}_S + j\omega q_s = 0$
- Then apply the same testing function for Galerkin's MoM, we have,

$$\hat{z} \times \int_{S} \vec{E}^{inc} \bullet \vec{B}_{j} dS = \hat{z} \times \sum_{i=1}^{N} \alpha_{i} \left[j\omega \int_{S} \vec{B}_{j} \int_{S} \vec{G}^{A} \bullet \vec{B}_{i} dS' dS - \frac{1}{j\omega} \int_{S} \vec{B}_{j} \bullet \nabla \int_{S} G^{\Phi} \nabla \bullet \vec{B}_{i} dS' dS \right]$$

- EM Absorption in the Human body
- EM absorption is specified in terms of specific absorption rate (SAR) which is the mass normalized rate of energy absorbed by the body
- At a specific location, SAR may be defined as

$$SAR = \frac{\sigma}{\rho} |E|^2$$

• where σ is tissue conductivity, ρ is tissue mass density, E=rms value of internal field strength

- Usual MoM steps are required:
 - Deriving the appropriate IE
 - Converting IE to matrix equation & matrix elements calculation
 - Solving the set of simultaneous equations
- We will use tensor integral-equation here
- What is this?
- When some electric field is incident on human body, the induced current in the body gives scattered electric field
 - Correspondingly the body may be replaced by an equivalent current density

• Consider Maxwell curl equation

$$\nabla \times \vec{E} = -j\omega\mu_0 \vec{H}$$

• We can derive wave equation from Maxwell curl equation as

$$\begin{aligned} \nabla \times \nabla \times \vec{E} &= -j\omega\mu_0 \left(\nabla \times \vec{H} \right) = -j\omega\mu_0 \left(\sigma \vec{E} + j\omega\varepsilon \vec{E} \right) \\ &= -j\omega\mu_0 \left(\sigma \vec{E} + j\omega \left(\varepsilon - \varepsilon_0 \right) \vec{E} + j\omega\varepsilon_0 \vec{E} \right) \\ &= -j\omega\mu_0 \left(\vec{J}_{conduction} + \vec{J}_{polarization} + j\omega\varepsilon_0 \vec{E} \right) \\ &= -j\omega\mu_0 \left(\vec{J}_{eq} + j\omega\varepsilon_0 \vec{E} \right) \\ &\Rightarrow \nabla \times \nabla \times \vec{E} - k_0^2 \vec{E} = -j\omega\mu_0 \vec{J}_{eq} \end{aligned}$$

227

MoM by Prof. Rakhesh Singh Kshetrimayum

- It is more like wave is propagating in free space
- And there is an equivalent current source which is effectively produced as an effect of the human body
- The equivalent current density can be expressed in terms of a tensor as follows

$$\vec{J}_{eq}\left(\vec{r}\right) = \sigma\left(\vec{r}\right)\vec{E}\left(\vec{r}\right) + j\omega\left(\varepsilon\left(\vec{r}\right) - \varepsilon_{0}\right)\vec{E}\left(\vec{r}\right) = \tau\left(\vec{r}\right)\vec{E}\left(\vec{r}\right)$$

- The tensor $\tau(\vec{r})$ takes into account all the effect of a human body in terms of a 3-D matrix
- Consider a biological body of arbitratry shape with constitutive parameters $\mathcal{E}, \mu_0, \sigma$ illuminated by an incident (or impressed) plane EM wave
- The induced current in the body gives rise to a scattered field \vec{E}^{s}

• For time varying electric fields $\vec{E}^s = -j\omega\vec{A} - \nabla\phi$ • where $\vec{A} = \mu_0 \int_{V'} G_0(\vec{r}, \vec{r'}) \vec{J}_{eq}(\vec{r'}) dv'$

• and the free space scalar Green's function is given by

$$G_{0}(\vec{r},\vec{r}') = \frac{e^{-jk\left|\vec{r}-\vec{r}'\right|}}{4\pi\left|\vec{r}-\vec{r}'\right|} \qquad \nabla \bullet \vec{A} = -j\omega\mu\varepsilon\phi$$

• From Lorentz Gaug condition
• Hence, the scattered fields are

$$\vec{E}^{s} = -j\omega\vec{A} + \frac{\nabla\nabla \bullet \vec{A}}{j\omega\mu\varepsilon}, \vec{H}^{s} = \frac{1}{\mu}\nabla \times \vec{A}$$

2/3/2021

MoM by Prof. Rakhesh Singh Kshetrimayum

- Since scattered electric and magnetic field are dependent on magnetic vector potential which is dependent on the equivalent current density, hence the fields are dependent on the equivalent current density \vec{J}_{eq}
- Let us analyze the dependence of fields on the \vec{J}_{eq}
- Suppose \vec{J}_{eq} is an infinitesimal elementary source at \vec{r}' pointed in x direction so that

$$\vec{J}_{eq} = \delta(\vec{r} - \vec{r}')\hat{x}$$

The corresponding magnetic vector potential is
$$\vec{A} = \mu_0 G_0(\vec{r}, \vec{r}')\hat{x} \quad \because \vec{A} = \mu_0 \int_{V'} G_0(\vec{r}, \vec{r}')\vec{J}_{eq}(\vec{r}')dv'$$

MoM by Prof. Rakhesh Singh Kshetrimayum

• If $\vec{G}_{0x}(\vec{r},\vec{r'})$ is the electric field produced by the above mentioned elementary source, it must satisfy the wave equation

$$\nabla \times \nabla \times \vec{G}_{0x}(\vec{r},\vec{r}') - k_0^2 \vec{G}_{0x}(\vec{r},\vec{r}') = -j\omega\mu_0 \delta(\vec{r}-\vec{r}')$$

• whose solution is given by

$$\vec{E}^{s} = \vec{G}_{0x} = -j\omega\mu_{0}G_{0}(\vec{r},\vec{r}')\hat{x} + \frac{\nabla\nabla\bullet G_{0}(\vec{r},\vec{r}')}{j\omega\varepsilon}\hat{x} \quad \because \vec{E}^{s} = -j\omega\vec{A} + \frac{\nabla\nabla\bullet\vec{A}}{j\omega\mu\varepsilon}$$
$$\Rightarrow \vec{G}_{0x} = -j\omega\mu_{0}\left(1 + \frac{1}{k^{2}}\nabla\nabla\bullet\right)G_{0}(\vec{r},\vec{r}')\hat{x} \qquad \vec{A} = \mu_{0}G_{0}(\vec{r},\vec{r}')\hat{x}$$
MoM by Prof. Rakhesh Singh Kshetrimayum
$$2/3/2021$$

• $\vec{G}_{0x}(\vec{r},\vec{r'})$ is referred to as a free space vector Green's

function with a source pointed in the x-direction

• We could also find the free space vector Green's

function $\vec{G}_{0y}(\vec{r},\vec{r'}), \vec{G}_{0z}(\vec{r},\vec{r'})$ for a source pointed in the y-direction and z-direction respectively

• We could now introduce a dyadic function which will store these three free space vector Green's function as

$$\vec{G}_{0}(\vec{r},\vec{r}') = \vec{G}_{0x}(\vec{r},\vec{r}')\hat{x} + \vec{G}_{0y}(\vec{r},\vec{r}')\hat{y} + \vec{G}_{0z}(\vec{r},\vec{r}')\hat{z}$$

- This is called free space dyadic Green's function
- It is a solution of the dyadic differential equation $\nabla \times \nabla \times \vec{G}_0(\vec{r}, \vec{r}') - k_0^2 \vec{G}_0(\vec{r}, \vec{r}') = -j\omega\mu_0 \vec{I} \,\delta(\vec{r} - \vec{r}')$

• where unit dyad is given by
$$\vec{I} = \hat{x}\hat{x} + \hat{y}\hat{y} + \hat{z}\hat{z}$$

- The physical meaning is that $\vec{G}_0(\vec{r},\vec{r'})$ is the electric field at a point \vec{r} due to an infinitesimal source at $\vec{r'}$ in any arbitrary orientation
- Then the scattered electric field due to any arbitrary equivalent current density may be expressed as

$$\vec{E}^{s} = \int_{V'} \vec{G}_{0}(\vec{r},\vec{r}') \bullet \vec{J}_{eq}(\vec{r}') dv'$$

• where

$$\vec{G}_{0}(\vec{r},\vec{r}') = \vec{G}_{0x}(\vec{r},\vec{r}')\hat{x} + \vec{G}_{0y}(\vec{r},\vec{r}')\hat{y} + \vec{G}_{0z}(\vec{r},\vec{r}')\hat{z}$$

235

MoM by Prof. Rakhesh Singh Kshetrimayum