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 Spatial domain MPIE MoM
 Spectral domain Mixed potential dyadic Green’s functions
 It has been reported in the literature that MPIE MoM is more 

efficient than EFIE 
 since the Green’s functions in the MPIE formulation are less 

singular.
 The magnetic field intensity can be expressed in terms of 

magnetic vector potential
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 For time harmonic fields the relation between the electric 
field and electric potential and magnetic vector potential is 
given as follows

 For x-directed current source, the two mixed potential 
spectral Green’s function components are
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 Spatial domain dyadic Green’s functions
 In order to obtain the spatial domain mixed potential Green’s 

functions, we may apply the Fourier-Bessel transform of 
spectral domain mixed potential Green’s functions as follows
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 where J0 is the Bessel function
 How?
 we may take its inverse Fourier transform as follows 

where variables p,q may be either x or y
• First we have a double infinite integration which may be 

converted into a single infinite integration by the following 
transformation in the variables
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 Substitute

 Hence
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 Spatial domain MPIE MoM
 Mixed potential integral equation (MPIE) for x-directed 

horizontal electric dipole can be expressed in terms of the 
mixed potential Green’s functions

 It is basically an expression of the continuity of the tangential 
component of the electric field



 We need to replace the scattered field in the RHS by using 
the following relation with the potentials
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 Since



 and satisfies Helmholtz wave equation 



 and hence 

 In electrostatics, 
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 As usual in MoM, we may approximate the unknown current 
and charge in terms of some known basis functions

 Note that here Bi is the basis function not to be confused 
with magnetic flux density

 Equation continuity 
 Then apply the same testing function for Galerkin’s MoM, 

we have,
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 EM Absorption in the Human body
 EM absorption is specified in terms of specific absorption 

rate (SAR) which is the mass normalized rate of energy 
absorbed by the body

 At a specific location, SAR may be defined as

 where      is tissue conductivity,      is tissue mass density, 
E=rms value of internal field strength 
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 Usual MoM steps are required:
 Deriving the appropriate IE
 Converting IE to matrix equation & matrix elements calculation
 Solving the set of simultaneous equations

 We will use tensor integral-equation here
 What is this?
 When some electric field is incident on human body, the 

induced current in the body gives scattered electric field
 Correspondingly the body may be replaced by an equivalent 

current density
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0
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 

 Consider Maxwell curl equation

 We can derive wave equation from Maxwell curl equation as
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 It is more like wave is propagating in free space
 And there is an equivalent current source which is effectively 

produced as an effect of the human body 
 The equivalent current density can be expressed in terms of a 

tensor as follows
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 The tensor         takes into account all the effect of a human 
body in terms of a 3-D matrix 

 Consider a biological body of arbitratry shape with 
constitutive parameters                      illuminated by an 
incident (or impressed) plane EM wave

 The induced current in the body gives rise to a scattered field 
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 For time varying electric fields
 where

 and the free space scalar Green’s function is given by

 From Lorentz Gaug condition
 Hence,  the scattered fields are
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 Since scattered electric and magnetic field are dependent on  
magnetic vector potential which is dependent on the 
equivalent current density, hence the fields are dependent on 
the equivalent current density

 Let us analyze the dependence of fields on the  
 Suppose          is an infinitesimal elementary source at 

pointed in x direction so that

 The corresponding magnetic vector potential is   
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 If                    is the electric field produced by the above 
mentioned elementary source, it must satisfy the wave 
equation

 whose solution is given by
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 is referred to as a free space vector Green’s 

function  with a source pointed in the x-direction

 We could also find the free space vector Green’s 

function                                           for a source pointed in 
the y-direction and z-direction respectively
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 We could now introduce a dyadic function which will store 
these three free space vector Green’s function as

 This is called free space dyadic Green’s function
 It is a solution of the dyadic differential equation

 where unit dyad is given by
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 The physical meaning is that               is the electric field at a 
point              due to an infinitesimal source at       in any 
arbitrary orientation

 Then the scattered electric field due to any arbitrary 
equivalent current density may be expressed as 

 where
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