MoM Advances

- Spatial domain MPIE MoM
- Spectral domain Mixed potential dyadic Green's functions
- It has been reported in the literature that MPIE MoM is more efficient than EFIE
- since the Green's functions in the MPIE formulation are less singular.
- The magnetic field intensity can be expressed in terms of magnetic vector potential

$$
\mu \vec{H}=\nabla \times \vec{A}
$$

MoM Advances

- For time harmonic fields the relation between the electric field and electric potential and magnetic vector potential is given as follows

$$
\vec{E}=-j \omega \vec{A}-\nabla \Phi
$$

- For x-directed current source, the two mixed potential spectral Green's function components are

$$
\tilde{G}_{x x}^{A}=\frac{1}{j \omega \mu_{0}} V_{\text {horizon }}^{T E}=\frac{1}{j \omega \mu_{0}} Z_{e q}^{T E}=\frac{k_{0} \eta_{0}}{j \omega \mu_{0}} \frac{1}{D_{T E}}=\frac{1}{j D_{T E}}
$$

MoM Advances

$$
\begin{aligned}
& \tilde{G}^{\Phi}=\frac{j \omega \varepsilon_{0}}{k_{\rho}^{2}}\left(V_{\text {horizon }}^{T M}-V_{\text {horizon }}^{T E}\right)=\frac{j \omega \varepsilon_{0}}{k_{\rho}^{2}}\left(Z_{e q}^{T M}-V_{e q}^{T E}\right) \\
& =\frac{j \omega \varepsilon_{0} \eta_{0}}{k_{\rho}^{2}}\left(\frac{k_{0}}{D_{T E}}-\frac{\beta_{0}}{k_{0} D_{T M}}\right)=\frac{j}{k_{\rho}^{2}}\left(\frac{k_{0}^{2} D_{T M}-\beta_{0} D_{T E}}{D_{T E} D_{T M}}\right)
\end{aligned}
$$

- Spatial domain dyadic Green's functions
- In order to obtain the spatial domain mixed potential Green's functions, we may apply the Fourier-Bessel transform of spectral domain mixed potential Green's functions as follows

$$
G_{x x}^{A}=\int_{0}^{\infty} \tilde{G}_{x x}^{A} J_{0}\left(k_{\rho} \rho\right) k_{\rho} d k_{\rho} ; G^{\Phi}=\int_{0}^{\infty} \tilde{G}^{\Phi} J_{0}\left(k_{\rho} \rho\right) k_{\rho} d k_{\rho}
$$

MoM Advances

- where J_{0} is the Bessel function
- How?
- we may take its inverse Fourier transform as follows

$$
G_{E J}^{p q}\left(x, y ; x^{\prime}, y^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \tilde{G}_{E J}^{p q}\left(k_{x}, k_{y}\right) e^{-j k_{x}\left(x-x^{\prime}\right)} e^{-j k_{y}\left(y-y^{\prime}\right)} d k_{x} d k_{y}
$$

where variables p, q may be either x or y

- First we have a double infinite integration which may be converted into a single infinite integration by the following transformation in the variables

MoM Advances

- Substitute

$$
k_{x}=k_{\rho} \cos \alpha, k_{y}=k_{\rho} \sin \alpha ; k_{\rho}=k_{\rho} \cos \alpha \hat{x}+k_{\rho} \sin \alpha \hat{y}=k_{x} \hat{x}+k_{y} \hat{y}
$$

- Hence

$$
\begin{aligned}
& G_{E J}^{p q}\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{1}{(2 \pi)^{2}} \int_{-\infty-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\tilde{G}_{E J}^{p q}\left(k, z, z^{\prime}\right) e^{-j \vec{k}\left(\vec{r}-\vec{r}^{\prime}\right)}\right) d \vec{k} \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \tilde{G}_{E J}^{p q}\left(k_{\rho}, z, z^{\prime}\right)\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-j \overrightarrow{k_{\rho}} \cdot\left(\vec{r}-\vec{r}^{\prime}\right)} d \alpha\right) k_{\rho} d k_{\rho} \\
& =\frac{1}{2 \pi} \int_{0}^{\infty} \tilde{G}_{E J}^{p q}\left(k_{\rho}, z, z^{\prime}\right) J_{0}\left(k_{\rho}\left|\vec{r}-\vec{r}^{\prime}\right|\right) k_{\rho} d k_{\rho}
\end{aligned}
$$

MoM Advances

- Spatial domain MPIE MoM
- Mixed potential integral equation (MPIE) for x-directed horizontal electric dipole can be expressed in terms of the mixed potential Green's functions
- It is basically an expression of the continuity of the tangential component of the electric field
- $\hat{z} \times \vec{E}^{i n c}=-\hat{z} \times \int_{S} \overleftrightarrow{G}_{E J}\left(\vec{r}, \vec{r}^{\prime}\right) \cdot \vec{J}_{S}\left(\vec{r}^{\prime}\right) d \vec{s}^{\prime}$
- We need to replace the scattered field in the RHS by using the following relation with the potentials

MoM Advances

- Since
- $\vec{E}=-j \omega \vec{A}-\nabla \Phi$
- and \vec{A} satisfies Helmholtz wave equation
- $\left(\nabla^{2}+k^{2}\right) \vec{A}=-\mu \vec{J}$
- and hence $\vec{A}(\vec{r})=\int_{S} \overleftrightarrow{G}^{A}\left(\vec{r}, \vec{r}^{\prime}\right) \cdot \vec{J}_{S}\left(\vec{r}^{\prime}\right) d \vec{s}^{\prime}$
- In electrostatics, $V(\vec{r})=\int_{S} G^{\Phi}\left(\vec{r}, \vec{r}^{\prime}\right) q_{S}\left(\vec{r}^{\prime}\right) d \vec{s}^{\prime}$

$$
\hat{z} \times \vec{E}^{i n c}=\hat{z} \times\left[j \omega \int_{S} \vec{G}^{A} \bullet \vec{J}_{S} d S^{\prime}+\nabla \int_{S} G^{\Phi} q_{S} d S^{\prime}\right]
$$

MoM Advances

- As usual in MoM, we may approximate the unknown current and charge in terms of some known basis functions

$$
\vec{J}_{S} \cong \sum_{i=1}^{N} \alpha_{i} \vec{B}_{i} ; q_{S} \cong \sum_{i=1}^{N} \alpha_{i}\left(-\frac{\nabla \bullet \vec{B}_{i}}{j \omega}\right)
$$

- Note that here Bi is the basis function not to be confused with magnetic flux density
- Equation continuity $\nabla \cdot \vec{J}_{S}+j \omega q_{s}=0$
- Then apply the same testing function for Galerkin's MoM, we have,
$\hat{z} \times \int_{S} \vec{E}^{i n c} \bullet \vec{B}_{j} d S=\hat{z} \times \sum_{i=1}^{N} \alpha_{i}\left[j \omega \int_{S} \vec{B}_{j} \int_{S} \vec{G}^{A} \bullet \vec{B}_{i} d S^{\prime} d S-\frac{1}{j \omega} \int_{S} \vec{B}_{j} \bullet \nabla \int_{S} G^{\Phi} \nabla \bullet \vec{B}_{i} d S^{\prime} d S\right]$

MoM Advances

- EM Absorption in the Human body
- EM absorption is specified in terms of specific absorption rate (SAR) which is the mass normalized rate of energy absorbed by the body
- At a specific location, SAR may be defined as

$$
S A R=\frac{\sigma}{\rho}|E|^{2}
$$

- where σ is tissue conductivity, ρ is tissue mass density, $\mathrm{E}=\mathrm{rms}$ value of internal field strength

MoM Advances

- Usual MoM steps are required:
- Deriving the appropriate IE
- Converting IE to matrix equation \& matrix elements calculation
- Solving the set of simultaneous equations
- We will use tensor integral-equation here
- What is this?
- When some electric field is incident on human body, the induced current in the body gives scattered electric field
- Correspondingly the body may be replaced by an equivalent current density

MoM Advances

- Consider Maxwell curl equation

$$
\nabla \times \vec{E}=-j \omega \mu_{0} \vec{H}
$$

- We can derive wave equation from Maxwell curl equation as

$$
\begin{aligned}
& \nabla \times \nabla \times \vec{E}=-j \omega \mu_{0}(\nabla \times \vec{H})=-j \omega \mu_{0}(\sigma \vec{E}+j \omega \varepsilon \vec{E}) \\
& =-j \omega \mu_{0}\left(\sigma \vec{E}+j \omega\left(\varepsilon-\varepsilon_{0}\right) \vec{E}+j \omega \varepsilon_{0} \vec{E}\right) \\
& =-j \omega \mu_{0}\left(\vec{J}_{\text {conduction }}+\vec{J}_{\text {polarization }}+j \omega \varepsilon_{0} \vec{E}\right) \\
& =-j \omega \mu_{0}\left(\vec{J}_{e q}+j \omega \varepsilon_{0} \vec{E}\right) \\
& \Rightarrow \nabla \times \nabla \times \vec{E}-k_{0}^{2} \vec{E}=-j \omega \mu_{0} \vec{J}_{e q}
\end{aligned}
$$

MoM Advances

- It is more like wave is propagating in free space
- And there is an equivalent current source which is effectively produced as an effect of the human body
- The equivalent current density can be expressed in terms of a tensor as follows

$$
\vec{J}_{e q}(\vec{r})=\sigma(\vec{r}) \vec{E}(\vec{r})+j \omega\left(\varepsilon(\vec{r})-\varepsilon_{0}\right) \vec{E}(\vec{r})=\tau(\vec{r}) \vec{E}(\vec{r})
$$

MoM Advances

- The tensor $\tau(\vec{r})$ takes into account all the effect of a human body in terms of a 3-D matrix
- Consider a biological body of arbitratry shape with constitutive parameters $\mathcal{E}, \mu_{0}, \sigma$ illuminated by an incident (or impressed) plane EM wave
- The induced current in the body gives rise to a scattered field \vec{E}^{s}

MoM Advances

- For time varying electric fields $\quad \vec{E}^{s}=-j \omega \vec{A}-\nabla \phi$
- where

$$
\vec{A}=\mu_{0} \int_{V^{\prime}} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d \nu^{\prime}
$$

- and the free space scalar Green's function is given by

$$
G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\frac{e^{-j k\left|\vec{r}-\vec{r}^{\prime}\right|}}{4 \pi\left|\vec{r}-\vec{r}^{\prime}\right|}
$$

$$
\nabla \bullet \vec{A}=-j \omega \mu \varepsilon \phi
$$

- From Lorentz Gaug condition
- Hence, the scattered fields are

$$
\Rightarrow \phi=\frac{\nabla \bullet \vec{A}}{-j \omega \mu \varepsilon}
$$

$$
\vec{E}^{s}=-j \omega \vec{A}+\frac{\nabla \nabla \bullet \vec{A}}{j \omega \mu \varepsilon}, \vec{H}^{s}=\frac{1}{\mu} \nabla \times \vec{A}
$$

MoM Advances

- Since scattered electric and magnetic field are dependent on magnetic vector potential which is dependent on the equivalent current density, hence the fields are dependent on the equivalent current density $\vec{J}_{e q}$
- Let us analyze the dependence of fields on the $\vec{J}_{\text {eq }}$
- Suppose $\vec{J}_{e q}$ is an infinitesimal elementary source at \vec{r}^{\prime} pointed in x direction so that

$$
\vec{J}_{e q}=\delta\left(\vec{r}-\vec{r}^{\prime}\right) \hat{x}
$$

- The corresponding magnetic vector potential is

$$
\vec{A}=\mu_{0} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x} \quad \because \vec{A}=\mu_{0} \int_{V^{\prime}} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}
$$

MoM Advances

- If $\quad \vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)$ is the electric field produced by the above mentioned elementary source, it must satisfy the wave equation

$$
\nabla \times \nabla \times \vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)-k_{0}^{2} \vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)=-j \omega \mu_{0} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

- whose solution is given by

$$
\begin{array}{ll}
\vec{E}^{s}=\vec{G}_{0 x}=-j \omega \mu_{0} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}+\frac{\nabla \nabla \bullet G_{0}\left(\vec{r}, \vec{r}^{\prime}\right)}{j \omega \varepsilon} \hat{x} \quad \because \vec{E}^{s}=-j \omega \vec{A}+\frac{\nabla \nabla \bullet \vec{A}}{j \omega \mu \varepsilon} \\
\Rightarrow \vec{G}_{0 x}=-j \omega \mu_{0}\left(1+\frac{1}{k^{2}} \nabla \nabla \bullet\right) G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x} & \vec{A}=\mu_{0} G_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x} \\
\text { 232 } \quad \text { MoM by Prof. Rakhesh Singh Kshetrimayum }
\end{array}
$$

MoM Advances

- $\vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right)$ is referred to as a free space vector Green's
function with a source pointed in the x -direction
- We could also find the free space vector Green's
function $\quad \vec{G}_{0 y}\left(\vec{r}, \vec{r}^{\prime}\right), \vec{G}_{0 z}\left(\vec{r}, \vec{r}^{\prime}\right)$ for a source pointed in the y -direction and z -direction respectively

MoM Advances

- We could now introduce a dyadic function which will store these three free space vector Green's function as

$$
\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}+\vec{G}_{0 y}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{y}+\vec{G}_{0 z}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{z}
$$

- This is called free space dyadic Green's function
- It is a solution of the dyadic differential equation

$$
\nabla \times \nabla \times \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)-k_{0}^{2} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=-j \omega \mu_{0} \vec{I} \delta\left(\vec{r}-\vec{r}^{\prime}\right)
$$

- where unit dyad is given by

$$
\vec{I}=\hat{x} \hat{x}+\hat{y} \hat{y}+\hat{z} \hat{z}
$$

MoM Advances

- The physical meaning is that $\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)$ is the electric field at a point $\vec{r} \quad$ due to an infinitesimal source at \vec{r}^{\prime} in any arbitrary orientation
- Then the scattered electric field due to any arbitrary equivalent current density may be expressed as

$$
\vec{E}^{s}=\int_{V^{\prime}} \vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right) \bullet \vec{J}_{e q}\left(\vec{r}^{\prime}\right) d v^{\prime}
$$

- where

$$
\vec{G}_{0}\left(\vec{r}, \vec{r}^{\prime}\right)=\vec{G}_{0 x}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{x}+\vec{G}_{0 y}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{y}+\vec{G}_{0 z}\left(\vec{r}, \vec{r}^{\prime}\right) \hat{z}
$$

