Title: Certain eta-quotients and ℓ -regular overpartitions.

Abstract: In 2003, Lovejoy introduced the notion of ℓ -regular overpartition $\overline{A}_{\ell}(n)$, which counts the number of overpartitions of n into parts not divisible by ℓ . In this talk we show that the arithmetic density of the set $\{n \in \mathbb{Z}_{\geq 0} : \overline{A}_{\ell}(n) \equiv 0 \pmod{p^j}\}$ is exactly 1; if $p_i^{2a_i} \geq \ell$, where j is a fixed positive integer and $\ell = p_1^{a_1} p_2^{a_2} \dots p_m^{a_m}$ with primes $p_i > 3$. We also exhibit infinite families of congruences and multiplicative identities for $\overline{A}_5(n)$. In particular, for any positive integer k and prime number $p \equiv 3 \pmod{4}$, we prove that:

$$\overline{A}_5 \left(4p^{2(k+1)}n + 4p^{2k+1}j + p^{2(k+1)} \right) \equiv 0 \pmod{8},$$

where $j \not\equiv 0 \pmod{p}$. This is a joint work with Prof. Kalyan Chakraborty.