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Abstract

The Newton map of a rational function R is given by z — 11;((?)' The following are proved on

the dynamics of all quadratic and cubic Newton maps of rational functions.

Let R be a rational function such that its Newton map Ng is quadratic. Then Npg is
conformally conjugate either to Ni(z) = z — -—17— or to Na(z) = z+ ﬁ for some natural
= T z=-1 z z—1

numbers dq, ds, e1, es. B
1. If Ng is conformally conjugate to N7 then the Fatou set of Ny is the union of two com-
pletely invariant attracting domains and the Julia set is a Jordan curve.

2. If Ng is conformally conjugate to Ny then the Fatou set of Ny is equal to a completely
invariant attracting domain and the Julia set is totally disconnected.

In other words, the Julia set of Ny is either a Jordan curve or totally disconnected.

If a cubic Newton map is conformally conjugate to a polynomial then its Fatou set is A J A*,
where A* is the completely invariant attracting domain corresponding to a superattracting fixed
point and A is one of the following.

1. A is the union of two invariant attracting domains corresponding to two finite attracting
fixed points. The Fatou set is the union of infinitely many components and each is simply
connected. The Julia set is a self intersecting closed curve.

2. A is the completey invariant attracting domain corresponding to a finite attracting fixed
point. In this case, the Julia set is a Jordan curve.
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