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The method of images
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e A point charge ¢

e Held at a distance d above an infinite grounded
conducting plane

>
Y e Q. What is the potential in the region above the plane?
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e It i1s not

e Because ¢ will induce negative charges on the conductor.

e Total potential is due to ¢ and induced charge on plane.

e Need to solve Poisson’s equation in the region z > 0, with a single point charge
q at (0,0, d), subject to the boundary condition:

1. V=0 at z = 0 (since conducting plane is grounded),

2. V — 0 far from the charge (i.e. for x* + y* + 2% >> d).

e First uniqueness theorem tells us that there is only one function that meets
these requirements. If by trick or clever guess we can find the function, it is
going to be the answer.



The method of images

<
%
C{? e Trick: Forget the actual problem!!

e Trick: Think of a new configuration: 2 point charges: +¢
at (0,0,d) and —q at (0,0, —d).

>, ® Potential for such a configuration
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Image charge

NEZERY:
e It follows that (1) V =0 at z = 0; 2 . ﬁ f :1: + - 2.
e And the only charge in z > 0 is +q at (0,0, d).

e These are precisely the conditions of the original problem.

e Second configuration happens to produce the exactly same situation and
boundary conditions as the first one for z > 0.

e Hence the potential for a point charge above an infinite grounded conducting
plane is given by above formula.



V=0: Grounded c¢
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Equipotential surfaces

7z<0 1s not of interest to us

V=0: Grounded conducting plane




The method of images

The electrostatic field for the image charge problem:

l

E(x,y,z) = -VV =

- q [ rz 4+ yy+ (2 —d)2 T+ yy + (2 +d)2

dmeo (22 +y2 4 (2 = d)2)32 (22 +y? A+ (2 + d)2)3)2
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V=0: Grounded conducting plane
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The method of images

Induced surface charge What is the surface charge induced on the conductor?

Now that we know the potential in the z > 0 region, we can easily work out the
distribution of charges induced on the conducting plate.

Recall that the electric field immediately above a conducting surface:

-~ O . oV oV
F=—nN— 0=—€— — 0= —¢€g—
€0 on 0z

where %—X is the normal derivative at the surface, and for us, the direction of

the normal is in 2z direction:

ov. 1 —q(z — d) N q(z +d)
0z  4Amey | (22 + 12+ (2 —d)2)3/2 (22 4+ y2 4 (2 + d)2)3/2

Therefore the charge density:

oV €0 2qd qd

o(2,y) = ~co g L Ama @2+ PR (a4 g+ )

As expected, the induced charge on the conducting plate is negative.



The method of images

Induced surface charge density:

oV €0 2qd qd

7(ty) =~y L Ame (RBP4 P

Induced charge is maximum at x = 0,y = 0!

So, the total charge: @ = / oda {0005

3 -0.010

J-0.015

It is easier to perform the integral
in polar coordinate: r? = x? 4 y?

and da = rdrdgo

-5

27 o0 —C]d
= drd
< /0 /O 2m(r? 4 @y
qd ‘OO

— ~ 9 EXPECTED!
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This means that all the flux leaving the point charge q i1s actually ending on the conducting plane.



The method of images
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Beware: Everything is not the same in the two problems! Energy is not the same!

For point charge and the plane For two point charges
1 ¢? Energy is half than that when W 1 q°
W=- dreg 4d “there are two point charges - drreg 2d
Recall We have considered both
Only the upper (z>0) region upper (z>0) and lower (z<0)
contributed to the energy. W = %0 / E2dr regions and by symmetry both

contributed equally.



Two Infinite Grounded Conducting Planes
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The two grounded conducting surfaces at right angles, say, xy & xz-planes and
a real charge placed in the first quadrant.



Two Infinite Grounded Conducting Planes
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One image charge is not good enough. Red line is the zero equipotential.



Two Infinite Grounded Conducting Planes

Even two image charges are not good enough. Red line is the zero
equipotential.



Two Infinite Grounded Conducting Planes

Must put three image charges. Red line is the zero equipotential.



Method of Direct Integration
Example

Consider two co-axial conducting cones of infinite extent with angles #1 and 62,
respectively, and separated by an infinitesimal insulating gap at r = 0. Find V
in the region between the two cones, given that the inner cone is grounded
while the outer cone is kept at constant potential Vo .

V depends only on 8, so Laplace’s equation in spherical coordinates

| d av’
VeV = — sinfl — | =
r’sinado[“"edoJ 0

Since ¥ = 0 and § = 0, 7 are excluded, we can multiply by r*sin @

d| . _dV
% LSln 0 %] =
Integrating once gives
av. A
9 sin b

Integrating this results to get

(.
V=A J -,i~ = Aln(tan 8/2) + B
sin 6



We now apply the boundary conditions to determine the integration constants A and B.

(@ VieE=0)=0 — 0=AlIn(tan6,/2) + B
B = —~Aln(tan 8,/2)

Hence
V=A]n[tan0/2J
tan #,/2
i (b) Vie=606,)=V, = V,=A4In [tanOﬁJ
tan 6,/2
A= Yo
[lan 02/2]
In
tan #,/2
Thus

tan 6/2 ]

L
Vi) = - an b,/2 ]

[tan 02/2]
In
tan @,/2

V, In [




Solving Laplace’s equation directly: Separation of Variables

Two infinite grounded metal plates lie parallel to the xz plane, one at y = 0,
the other at y = a. The left end, at x = 0, is closed off with an infinite strip
insulated from the two plates and maintained at a specific potential V;(y). Find
the potential inside this infinite “slot”. (Griffiths, Example 3.3)

yA

Few observations:

e There 1s a translational symmetry along z direction,(,& S= (2 <\-°9
therefore the potential must be independent of z.

Va
e Qur region of interest is x > 0,0 < y < a. i
a V=0

e The boundary has six surtaces / T
Vi
r = 0 and x=o00 oly) V=0
= 0 and y=a
z = Z4oo <
e We need to solve Laplace’s eqn: Boundary conditions: (on the surfaces)
Viz,y,z) = Vy(y) for z =0
v2v_82_V+f92_V_0 Viz,y,z) = 0 fory=0, y=a
_ 85132 ayz - 7y7 y Y y

0 for x — o

Viz,y,z)



Separation of Variables strategy:

e Look for solutions of the form V(x,y) = X (x)Y (y). There is no guarantee
that such solutions exists. But in some cases, such separation may be possible.

e But that is absurd!

/ ~—

Not all solutions can be written Gives only a tiny subset of all
in that product form. possible solutions

e These kind of product solutions may not fit the boundary conditions. Apply
as many conditions as possible to narrow down number of possible solutions.

e Laplace’s equation is linear: V*V; =0, V?Vh =0 = V*(aVi + BV2) =0

e Hence aV; + BV, is also a solution to Laplace’s equation. It is therefore
possible that some linear combination of such solutions may fit the remaining
boundary conditions.



Separation of Variables Strategy: separate, divide and conquer!
Substitute the solution V(x,y) = X (x)Y (y) into Laplace’s equation

oy — 5 XK@Y+ 5 (X@Y(R) = 0

Note: Total derivative
Why?

Dividing both sides by X (z)Y (v)

Now, the LHS is a function of x only and RHS is function of y only.

This necessarily means that each side must be equal to a constant!

1 2X 1 2y
" X(z) = — YY) = k* (say).
X(z) da? Y(y) dy?
We get two separate equations: 1 72 y(4) Ml ‘Divide and rule” policy worked!
= k
X(z) dx? A PDE has been converted
1 &Y (y) 2 e 2 separate ODEs and ODEs

Y(y) dy? are much easier to solve!



Separation of Variables

Solutions:
1 d*°X(x) , |
X(CU) dx? = k = X(.’L’) — Ael“‘l L Be—k:c
1 d2Y(y) , |
i = k"= Y(y) =Csinky+ D cosky
Y(y) dy? (v)

Boundary Conditions:

Viz,y,z) = Vy(y) for x =0

Viz,y,z)

= 0 fory=0, y=a

V(zr,y,z) = 0 forz — oo

Hence the potential V(z,y) = X (2)Y (y) = (Ae"* + Be **)(Csin ky + D cos ky)

Now, let us fit the boundary conditions: (to fix the constants A, B, C' etc.)

e Since as x — oo, V — 0: == X(x) — 0, hence coefficient of e** must
vanish. This means A = 0. Absorbing B into C' and D, we get

V(z,y) = e *(Csinky + D cos ky)

e Since, at y =0, V =0: = Y (y) = 0: only possible if coefficient of cos ky is

zero. Hence D = 0. . V(x,y) = Ce " sin ky.

e Again,at y=1a,V =0: = Y(y) =0,ie. Y(a) =Csinka =0

ni
a

:}k‘:kn:—7 (n:172737)

[This gives us countably infinite number of solutions]

/':f Vn (

)=C e "




Separation of Variables

There is one more Boundary Condition, which is still unused. V(z,y,2) = VWy(y) forx =0

S0, the situation now is the following:
e We have countably infinite number of solutions: V,, = C' e™""*/%sin(nmy/a).

e Unless Vy(y) just happens to have the form sin(nmy/a) for some n, we can
not fit the final boundary condition at x = 0.

e Separation of variable has given us an infinite family of solutions (one for each
n), but, none of them by itself satisfies the final boundary condition!

n Kn Vn(X, Y) V(00 ’ Y) Vn(Xa 0) Vn(Xa a) Vn(Oa y)
1 % e—TT/a Sil’l(’];—y 0 0 0 Sin(%lj)
y = ety o o o sin(?m)
3 8T e73mw/agin(3) 0 0 0  sin(32Y)

How to incorporate the final condition V (z,y,2) = Vo(y) for 2 =072



Separation of Variables

Construct a linear combination out of the solutions V,, of the Laplace’s Equation:

Zan (z,y) = a1 Vi(z,y) + asVo(x,y) + -

Each V,, satisfies Laplace’s equation separately. Therefore:
VWV =1V Vi + auV2Vy + - =003 + 0ag + --- =0
(Laplace’s equation is linear!)

Exploiting this fact, we can patch together the separable solutions to construct
a more general solution:

©.@)
_ Z C, e~/ gin (mry) Still satisfies the three

a boundary conditions

The question: can we fit the final boundary condition by choosing the C),’s?
i.e. we must find C, (5, --- etc. such that the final boundary condition:
= Z Cpsin(nmy/a) = Vo(y) is satisfied.

Can we do that?



Separation of Variables Fourier’s Trick

Our problem is essentially solved if we can uniquely find C4,Cs, - -- such that

— TN

> 7 /nmy
Z C, sin (T) = Vo (y) Fourier Sine Series
n=1

The good news is that the existence of such a unique set of numbers C,, is
guaranteed by Dirichlet’s theorem: virtually any function Vj(y) (even having
some finite number of discontinuities) can be expanded in the above Fourier
Sine Series.

Let m be a positive integer, then multiply by sin(mmy/a) both sides and integrate

5 Cosin (77 ) sin (72— sin ("7 ) v

n=1
Z C’n/ sin (mwy) sin (@> dy = / sin (mﬂy) Vo(y)dy
— 0 a a 0 a

The integral in LHS is 0 if m # n and is 5 if m = n.

Essentially all the terms in the series drop out, except the one with n = m/!

O, = 2 /Oa sin (mwy) Vo(y)dyf

a a




Separation of Variables The solution : At last!

Example: Let V(y) = Vi = constant for all y. Then, we have

Co = 2 /Oa sin (@) Vo(y)dy

a a
2Vo (¢ . /nmy

= — sin (—) dy
a Jg a
2V,

= 222(1 — cosnm)
nm

0 if n is even.

B {% if n is odd;




A plot of the Potential

0.4 0.6 0.8 1.0

.Equipote-ntial.s

a 1.0 0.0

Plot of the potential

V(ZE,y) = — —€

n=100
How the first few terms in the n=20
Four . .
urier series combine tq ma1.<e * =10
a better and better approximation
n=

to Vo.




Example

Two infinitely long grounded metal plates, again at y = 0 and y = a, are connected at x = +b
by metal strips maintained at a constant potential Vj), as shown in Fig. 3.20 (a thin layer
of insulation at each corner prevents them from shorting out). Find the potential inside the
resulting rectangular pipe.

Solution: Once again, the configuration is independent of z. Our problem is to solve Laplace’s
equation

+ — =0,
Ox?2 (
subject to the boundary conditions (i) V =0 when y =0,
(M) V =0wheny=a,
(1)) V = Vy when x = b,
(iv) V = Vywhenx = —b,

P2V 9%y
2

Yi




Vix,y) = (’Aek“' 4 Be-kx)(C sinky 4+ D cosky).

This time, however, we cannot set A = 0; the region in question does not extend to x = oo,
s0 ek* is perfectly acceptable. On the other hand, the situation is symmetric with respect to x,
sO V(—x,y) = V(x,y),and it follows that A = B. Using

(1) V =0wheny =0,

e 4 e7kx — 2 coshkx, (1)) V =0wheny =a,
(1) V = Vywhen x = b,
and absorbing 2A into C and D, we have (iv) V = Vywhenx = —b.

V(x,y) =coshkx (Csinky + Dcosky).
Boundary conditions (i) and (i1) require, as before, that D = 0 and k = nm/a, so

V(x,y) = Ccosh(nmx/a) sin(nmy/a).

Because V (x, y) is even in x, it will automatically meet condition (iv) if it fits (iii). It remains,
therefore, to construct the general linear combination,

o0
Vix.y) = Z Cp cosh(nmx/a) sin(nmwy/a).

n=I1

and pick the coefficients Cy, in such a way as to satisfy condition (iii):

o0
Vb,y) = Z Cp cosh(nmb/a) sin(nmy/a) = Vj.

n=I1



0, if n 1s even
Cpcosh(nmb/a) = 4V,
nr

if n 1s odd

Conclusion: The potential in this case is given by

4Vy Z | cosh(nmx/a)

Vx,y)= — s
T nel3s. n cosh(nmb/a)

sin(nmy/a).



3D Laplace’s Equation in Cartesian System

Example An infinitely long rectangular metal pipe (sides a and b) is
grounded, but one end, at x = 0, i1s maintained at a specified potential Vp(y, 2).

Find the potential inside the pipe.
YT v=0 (i) V =0wheny=0,
. L} (i) V =0wheny=a,
(1) V = 0 when z = 0,
Voly,2) — (iv) V =0whenz = b, BC
b - (v V—=0asx— o0,
f (vi) V = Vu(y,z) whenx = 0.
V=0

a2V N v N 2V
ay: = 9z2

This is a genuinely three-dimensional problem, =0

dx?

1d*X 14*Y 14d*Z
Vi y,d=XWYMZ@) = gz yvar Tzdz




Separation of Variables & Boundary Conditions

It follows that
1 d*X 1 d*Y | d*Z
—_—— =0, —=-——=0;, = =0, ith C Cy 4 Cq = 0.
X dx2 l Y dy? 2 7 d22 1, Wl 1+ Ca+C3

Setting C = —k? and Cz = —[*, we have C; = k? + 2,

d*X d*y d*Z
- — = (K + )X, ——-kly — = —[2Z.
3 ODEs -7 =K +1%) 0 -
X(x) = AeV¥F 5 L g VEHx
= Y(y) = Csinky + Dcosky,

Z(z) = Esmliz + Fcoslz.

Boundary condition (v) implies A = 0, (1) gives D = 0, and (iii) yields F = 0,
whereas (ii) and (iv) require that k = nm /a and | = mx /b, where n and m are
positive integers. Combining the remaining constants, we are left with

Vix, y,z) = Ce *V Wal+m/byx gonny ia) sin(mmz/b).



Use of Fourier Trick

o0 OO0
VX, 3,20 =) ) Come™ Vmja+m/bPx Ginnry /a) sin(mmz/b)

awl mwl
BC. (Vi) T V©,y,2 =) )Y Cunsin(nry/a) sin(mrz/b) = Vo(y, 2)
n=| m=1

Use Founier Trick: multiply by sin{n'my/a) sin(m'mrz/b),

o0 o0 a b
ZZC"-"‘/ sin(nwy/a) sin(n'wy/a) dyf sin(mmz/b) sin(m'wz/b)dz
n=1 m=1 i 0

a pb
=[ f Vo(y, 2) sin(n'my/a) sin(m'mz/b)dydz.
0o Jo

a pb
Com= i] [ Vo(y, z) sin(nmry/a) sin(mrz/b)dydz.
ab Jo Jo



Final Solution for Vy(y, z) = const.

For instance, if the end of the tube is a conductor at constant potential Vy = Vo(y, 2)

Vo [° . b
Com=——| sin(nmwy/a)dy sinimmz/b)dz
ab Jy 0
0, if n or m is even,
— 1 16V,
2 0 \ if n and m are odd.
TEnm

16V «— 1 3
Vix,v,z) = ﬂ Z — e~/ (n/a) +(m[b) x sin(nwy/a) sin(mmz/b)

2
“ nm=1375... o




