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Electric fields in matter
Polarisation, Dielectrics,

Broad classification of materials

Plan is to discuss about:

Insulators (Dielectrics)

Semiconductors

Conductors

Superconductors

Recall: Conductors have “free” electrons, which are detached from the atoms.

Insulators have bound electrons, attached to its atoms. 

We have already discussed about conductors (metals)

We will discuss about insulators or dielectrics!



Dielectric

Why should we be bothered about insulators?
After all insulators/dielectrics do not conduct electricity. At first you might think that there 

should not be any effect of the electric field on the insulators!
Faraday showed that capacitance of a capacitor increases if we place a dielectric between its 
plates. If the dielectric completely fills up the space between the plates, then the capacitance 

increases by an amount k which depends only on the nature of the material. k is the property of 
the dielectric and is called dielectric constant. 
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We know that the capacitance of a parallel plate capacitor is 

where, 

Putting an insulating material between the plates increases C

That means voltage is lower for the same charge!

But, voltage diff. is the integral of electric field across the capacitor!

Hence electric field is reduced, even though charges remain same!
HOW??

Gauss law: Flux     charge enclosed!/ The only way electric field can reduce if the net charge inside the 
Gaussian surface is lower than it would be without the material.

Hence there must be positive charges on the surface of the dielectric. Since the field is reduced, but not 
zero, we would expect this positive charge to be smaller than the negative charge on the conductor!
When a dielectric is placed in an electric field, positive charges get induced on one surface and 

negative on the other



Induced dipole
What happens to a neutral atom when it is placed in an electric filed ?

• Due to the presence of a positively charged core in an atom with electrons surrounding it, 
the nucleus is pushed towards the electric filed. 

• The two opposing forces : electric field pulling the electron and nucleus apart and their 
mutual attractions drawing them together reach a balance : Atom is polarised

Atomic polarisability

~p = ↵~E

With plus and minus charges shifted slightly results in a dipole moment      pointing in the 
same direction as of the electric field. 

~p

Typically this induced dipole moment is approximately proportional to the field:•

H He Li Be C Ne Na Ar K Cs
0.667 0.205 24.3 5.60 1.76 0.396 24.1 1.64 43.4 59.6

Atomic polarizabilities (↵/4⇡✏0, in units of 10�30 m3)
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A quick calculation on atomic polarisability
A primitive atomic model: A point nucleus of charge +q surrounded by a uniformly 

charged sphere of charge -q: Crude approximation

• Suppose equilibrium occurs when the 
nucleus is ‘d’ distance apart

• We assume that the electron cloud remains 
same in external field

At this point, the external field pushing the 
nucleus will balance the internal field 
pulling it to  left ~E = ~Ee

The field at a distance ‘d’ inside a uniformly 
charged sphere:

~Ee =
⇢d

3✏0
r̂ =

1

4⇡✏0

qd

a3
r̂ = ~E

Dipole moment: p = qd = (4⇡✏0a
3)E

E =
1

4⇡✏0

qd

a3

= ↵E

Atomic polarisability : V is volume of the atom↵ = 4⇡✏0a
3 = 3✏0V



The case of molecular polarizability
• For molecules situations are more complex.

CO O
Polarization often depend on the direction of electric field

CO2 has polarisability 4.5⇥ 10�40
C

2
.m/N

when the field is along the axis of the molecule;
2⇥ 10�40

C
2
.m/N when the field is perpendicular.

• When the field is at some angle, one must 
resolve it in parallel and perpendicular 
components

{↵?,↵k}

~p = ↵? ~E? + ↵k ~Ek

For a completely asymmetric molecule: 

px = ↵xxEx + ↵xyEy + ↵xzEz

py = ↵yxEx + ↵yyEy + ↵yzEz

pz = ↵zxEx + ↵zyEy + ↵zzEz

↵ij forms the components
of polarisability tensor.



Two types of dielectrics
Polar dielectrics - having permanent electric dipole moments. (Example: water) 

The orientation of Polar molecules is random in the absence of an external electric field. 
When in electric field molecules align with the electric field. However, the alignment is not 
complete due to random thermal motion. The aligned molecules generate an electric field 

that is opposite to the applied field but smaller in magnitude. 

Non-Polar dielectrics - No permanent electric dipole moments. 

~E = ~E0 + ~Ep

| ~E| < | ~E0|



Polar molecules in electric field
Consider molecules which has built in dipole moment. Ex: Water molecule 

p = 6.1⇥ 10�30 C.m

What happens when we bring such polar molecules in 
electric field ? 

In case the field is uniform the force cancel at both end, with a residual torque on the dipole 
~N = [(~d/2)⇥ (q ~E)] + [( ~�d/2)⇥ (�q ~E)]

= q~d⇥ ~E = ~p⇥ ~E
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Dipole moment 
~p = q~d

~p
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A polar molecule that is free to rotate will swing around till it points in direction of the applied field. 



Polar molecule in non-uniform field

+q
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There will be a net force on the dipole

~F = ~F+ + ~F� = q( ~E+ � ~E�) = q(� ~E)

� ~E is the difference in electric field at both ends.

�Ex =
@Ex

@x
�x+

@Ex

@y
�y +

@Ex

@z
�z = (~d.~r)Ex

Now the change in x-component of the field

• Similarly one may write the change in the electric field in y and z directions

� ~E = (~d.~r) ~EHence, one may write

• Above formula works for a very small dipole

For a perfect dipole in non-uniform field, torque about the centre of dipole remains same

~N = ~p⇥ ~E

• However, the torque about an arbitrary point becomes
~N = (~p⇥ ~E) + (~r ⇥ ~F )

~F = q(~d.~r) ~E = (~p.~r) ~E



Example…

~p1 ~p2r
What is the torque on ~p1 due to ~p2 and on ~p2 due to ~p1 ?

Electric field due to ~p1 at the position of ~p2:

~E =
p

4⇡✏0r3
(2 cos ✓r̂ + sin ✓✓̂)Recall, and use ✓ = 90�

points 
down

~E1 =
p1

4⇡✏0r3
✓̂

Hence, torque on ~p2 due to ~p1:

~N = ~p2 ⇥ ~E1 = p2E1 sin 90
�(�ẑ) =

p1p2
4⇡✏0r3

(�ẑ)

Electric field due to ~p2 at the position of ~p1: ~E2 =
p2

4⇡✏0r3
(�2r̂)

points into 
the page

Again, use: ~E =
p

4⇡✏0r3
(2 cos ✓r̂ + sin ✓✓̂) with ✓ = ⇡

Hence, torque on ~p1 due to ~p2:

~N = ~p1 ⇥ ~E2 = p1E2 sin 90
�(�ẑ) =

2p1p2
4⇡✏0r3

(�ẑ)
Twice than 
the other 

one 

Although it might seem to be 
the same, it is actually not !



Polarization

What we said so 
far: 

Presence of a atom or molecule in external field will induce a tiny 
dipole moment  aligned in the direction of the field

If the material is a polar object it will feel a torque to align the 
dipole along the external field

Hence, we can summarise, that a material placed in external field will produce a lot of 
tiny little dipoles along the direction of the field: Material is polarised

We define hence, a parameter called Polarisation as

~P= dipole moment per unit volume

We will first study the field a polarised material itself produces and then study 
the effect of such material in external electric field

• What happens to a piece of dielectric material in an external electric field ?



The Field of a polarized object  
Suppose we have a piece of polarized object: an object containing a lot of microscopic dipoles lined 

up. The dipole moment per unit volume is given as     ~P

Q. What is the field produced by this object?

(Not the field that causes the polarization, but the field that the polarization itself has caused.)

Strategy: We know the field of an individual dipole, so we can chop the material up into infinitesimal 
dipoles and integrate to get the total field.

V (~r) =
1

4⇡✏0

~p. r̂
r2

Since it is easier to work with potentials, the potential for a single dipole:

~r
~p

The polarisation is given by ~P (~r 0)d⌧ 0 in an elemental volume.

The total potential at ~r is then given by

V (~r) =
1

4⇡✏0

Z

V

~P (~r 0). r̂
r2 d⌧ 0



The Field of a polarized object  

~r
~p

Potential at ~r is given by

V (~r) =
1

4⇡✏0

Z

V

~P (~r 0). r̂
r2 d⌧ 0

~r0
~r

~r � ~r
0
= ~r

~r0
✓
1

r
◆

=
r̂
r2

But, remember that

i.e. ~r0
✓

1

|~r � ~r 0|

◆
=

~r � ~r 0

|~r � ~r 0|3

~P (~r 0). r̂
r2 = ~P (~r 0).~r0

✓
1

r
◆

= ~r0.

 
~P (~r 0)

r

!
� 1

r
⇣
~r0.~P (~r 0)

⌘
Therefore:

Here, we have used the vector identity

~r.(f ~A) = f ~r. ~A+ (~rf). ~A



~r
~p

The Field of a polarized object  

V (~r) =
1

4⇡✏0

Z

V

~P (~r 0). r̂
r2 d⌧ 0

Hence the potential is

=) V (~r) =
1

4⇡✏0

"Z

V
~r0.

 
~P (~r 0)

r

!
d⌧ 0 �

Z

V

1

r (
~r0.~P (~r 0))d⌧ 0

#

Using divergence theorem

=
1

4⇡✏0

I

S

1

r
~P (~r 0).n̂0da0 � 1

4⇡✏0

Z

V

1

r (
~r0.P (~r 0))d⌧ 0

=
1

4⇡✏0

I

S

�b(~r 0)

r da0 +
1

4⇡✏0

Z

V

⇢b(~r 0)

r d⌧ 0

Looks like potential 
for a surface charge

Looks like potential 
for a volume charge

�b = ~P (~r).n̂ ⇢b = �~r.P (~r)

Bound surface charge density Bound volume charge density

This means that the potential (hence the field also) of a polarized object is same
as that produced by a volume charge density ⇢b = �~r.~P plus a surface charge
density �b = ~P .n̂.



Example: To find the electric field produced by a uniformly polarized sphere of radius R 

✓

n̂
z

R

P

Clearly the volume bound charge density is zero, since ~P is uniform:

⇢b = �~r.~P = 0

Surface bound charge density �b = ~P .n̂ = P cos ✓

=
1

4⇡✏0

I

S

�b(~r 0)

r da0 +
1

4⇡✏0

Z

V

⇢b(~r 0)

r d⌧ 0) V (~r)

V (~r) =
1

4⇡✏0

I

S

�b(~r 0)

r da0 =
1

4⇡✏0

I

S

P cos ✓0p
R2 + z2 � 2Rz cos ✓0

R2 sin ✓0d✓0d�0

~r
Let ~P = P ẑ

=
PR2

4⇡✏0

Z 2⇡

�=0

Z ⇡

✓=0

cos ✓0 sin ✓0d✓0d�0
p
R2 + z2 � 2Rz cos ✓0

Substitute: R2 + z2 � 2Rz cos ✓0 = t2

V (~r) =
PR2

2✏0

Z R+z

R�z

(R2 + z2 � t2)

2(Rz)2
dt



V (r, ✓) =

(
P
3✏0

r cos ✓ if r  R;
P
3✏0

R3

r2 cos ✓ if r � R.
After the integration:

Inside the sphere: ~E = �~rV = � P
3✏0

ẑ = � ~P
3✏0

for r < R.

i.e. electric field inside is uniform!

(Remember: z = r cos ✓)

Example: To find the electric field produced by a uniformly polarized sphere of radius R 

V (~r) =
1

4⇡✏0

4
3⇡R

3P

r2
cos ✓

=
1

4⇡✏0

~p.r̂

r2
.

Also note, the potential outside (r � R)

where p = Pd⌧ = 4
3⇡R

3P is the total dipole moment of the sphere

i.e. Outside the sphere the potential is identical to that of a perfect dipole at

the origin, whose dipole moment (~p) is the total dipole moment of the sphere!

P
3ϵ0

z

PR3

3ϵ0z2





The field of a polarized object is identical to the field that would be produced by a certain 
distribution of ‘bound charges’,   �b and ⇢b

= +-+++++++ ------ - genuine accumulation of charges
Long string of dipoles: head of one effectively cancels the tail of the neighbour. At the end two 

charges left over             ‘bound charges’           they can not be remove. 

=-q +q

d

A

To calculate actual amount of bound charges resulting  from
 a given polarization: Take a tube of dielectric parallel to  ~P

This chunk of dielectric has the dipole moment P(Ad), where
A is the area of cross section and d is the length of the chunk.

In terms of the charge (q) at the end, this same dipole moment is : qd. The bound charge that 
piles up to the right of the tube is : q= PA

If the ends are cut perpendicularly, then the surface charge density is: �b =
q

A
= P

A ✓

Aend

~P

n̂
For the oblique cut, the charge is still the same but A is Aend cos ✓

�b =
q

Aend
= P cos ✓ = ~P .n̂

This is the origin of the surface bound charges!

How to see the bound charges in action?



How to see the bound charges in action?
If the polarization is non uniform, bound charge starts accumulating within the material

 as well as on the surface

-
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Suppose we have a diverging     , then it would definitely mean that there will be accumulation
 of negative charges in the bulk. See figure:

~P

The net bound charge               in a given volume is 
equal and opposite to the amount that has been pushed out

through the surface. 

R
⇢bd⌧

The latter is ~P .n̂ per unit area.

Z

V
⇢bd⌧ = �

I

S
~P .d~a = �

Z

V
(~r.~P )d⌧.

Hence we have ⇢b = �~r.~P



Example:
Find bound charges in a spherical dielectric (radius R, centred at origin) and polarization given by 

~P (~r) = k~r

Where k is a constant and r is the vector from the centre. What is the net charge on the sphere?

• Bound surface charge density is given by �b = ~P .n̂ = kRr̂.r̂ = kR.

• Total bound surface charge is 4⇡kR3.

• Bound volume charge density is ⇢b = �~r.~P = �3k.

• Total bound volume charge is 4
3⇡R

3⇢b = �4⇡kR3.

• Net charge in material is zero.

What will be the electric field both inside and outside this polarized sphere? 

• for r < R: Enclosed charge is 4
3⇡r

3⇢b.

• Applying Gauss’s law inside the sphere: ~E = ⇢br
3✏0

r̂ =) ~E = � k
✏0
~r.

• for r > R: Enclosed charge is zero. Therefore field outside will be zero.



Gauss’s Law for Dielectrics
• We just saw that e↵ect of polarization is to produce accumulation of bound
charge: ⇢b = �~r.~P within the dielectric and �b = ~P .n̂ on the surface.

• Field due to polarization of medium is just the field due to this bound charge.

• We also want to accommodate fields due to everything else (excluding the
field due to polarization) into the picture.

• Call “this everything else” ⇢f : free charge density.

• Total charge density: ⇢ = ⇢b + ⇢f .

• Therefore the Gauss’s law reads: ✏0~r. ~E = ⇢ = ⇢b + ⇢f =) �~r.~P + ⇢f

=) ~r.(✏0 ~E + ~P ) = ⇢f =) ~r. ~D = ⇢f

• Here ~D ⌘ ✏0 ~E + ~P : Electric displacement.
Gauss’s law for dielectrics

• Integral form:
H
~D.d~a = Qfenc . Total free charge enclosed in the volume!

• Note that the Gauss’s law in dielectrics makes reference to free charge only.
That is good, because, free charge is the stu↵ we control!



Example:

s a�
L

A long straight wire, carrying uniform line charge density �, is surrounded by
rubber insulation out to a radius a. Find the electric displacement.

D(2⇡sL) = �L

~D =
�

2⇡s
ŝ

~E =
~D

✏0
=

�

2⇡✏0s
ŝ for s > a

This formula is valid everywhere. Particularly note: outside the rubber, ~P = 0:

Inside rubber, we do not know ~E since we do not know ~P .

Draw a cylindrical Gaussian surface of radius s and length L:



Example:
A thick spherical shell of inner radius a and outer radius b is made of dielectric
material with a “frozen in” polarization ~P (~r) = k

r r̂, where k is a constant and
r is the distance from the centre. There is no free charge in the problem. Find
the electric field in all three regions.

a

b
~P

~P

~P
~P

~P

⇢b = �~r.~P = � 1

r2
@

@r

✓
r2

k

r

◆
= � k

r2
�b = ~P .n̂ = +~P .r̂ =

k

b
(at r = b)

= �~P .r̂ = �k

a
(at r = a).

I
~D.d~a = Qfenc = 0 , since there is no free charge.

=) ~D = 0 everywhere.

=) ~D = ✏0 ~E + ~P = 0 everywhere.=) ~E = � 1
✏0
~P

In a < r < b, ~E = � k
✏0r

r̂ and is zero everywhere else.

In r < a and r > b, ~E = 0 since ~P = 0 there.

Method 2:

Method 1:

and

Qenc = (�k
a )4⇡a

2 +
R r
a (�

k
r̄2 )4⇡r̄

2dr̄ = �4⇡kr.

In region a < r < b

Therefore: ~E = 1
4⇡✏0

Qenc

r2 r̂ = �( k
✏0r

)r̂

In r < a and r > b, ~E = 0 since ~P = 0 there.

(Normal is outward with respect to the dielectric)


