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Vector Integral Calculus

Line, Surface and Volume integrals



Line Integration



Line Integrals

Extension of idea of integration of one variable

/a ' fla)da

to scalar and vector fields on any paths.

Naturally the question arises : “how to define paths?”

For that we need to review a little bit on parametric equations and curves.

Most familiar example: Equation of trajectory of a particle
1D: x = x(1)
oD: X = x(2);y = ¥(7)

3D: x = x(1);y = y(t); 2 = z(¢)



How to describe paths: Parametric equations and curves

Curve Parametric equations y
= Rcost
- 2 2 v ’ <t <2
vyt =0 = Rsint = b=
2 2 r = acost,
ro Y 1 0<t<2m
a2 b2 = bsint
i r = t,
y = f(x) Yy = f(t)
[ I i i
Line segment from (z1,y1,21) |

y = (I-yi+ty, 0<t <1

g — (2cost,2sint)
Lz = (1—t)z +t2

to (z2,y2, 22).

(cost,sint)
—— (2cost,sint)
(cost,2sint)




More complicated examples

The figure of eight curve

x(t) = sint, , | |
< < -1.0 -0.5 0.5
y(t) = sin2t Ostsom
Helix
xr(t) = sint,
y(t) = cost, 0<t<Tm
2(t) = t/2x«




Line integrals: Scalar field N

Now, divide the path into small segments: dr. ¢

de . d dr |
di(t) = do(t) & + dy(t) § = [ —i + d—iy) dt .
- X

Length of the segment:

41/2

dr dy : o,

Line integral of a Scalar ﬁeld f over a curve C (whose parametric representation

is given by the path 7
/ fdr = / f(r (t)|dt.

Generalisation for a function of three variables is straightforward : only change -

dr(t) = dx(t) T +dy(t) §+dz(t) 2
|7?/(t)‘ — [(d$/dt)2 + (dy/dt)z + (dz/dt)Q]l/Q



Example

Evaluate |, xyz dr where C is the helix given by #(t) = (cost, sint, 3t),
0<t<A4r.

7 (1]

GO
l
sin’ t -+ Cowdt

1
5 sin 2t \/

/ t sin 2tdt
— (— sin 2t — — cos 275)

= —3V107

/ xyz dr =
C

|
\\
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h \%




Example 2

I:f P = Q_moa,‘z'l—) :{-.'AA TJ‘CPO‘
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Line Integrals: Vector fields

Recall: while calculating the work done by a force along the direction of the
motion of a particle, you basically did “line integral” of a vector field!

—

F

/C Fdi = / "R (0) de T

C
r(t) in the range a <t < b is the parametric representation of path C.

Ex: A force field is given by ﬁ(az, y,2) = 8v%yz £+ 5z § — 4zy 2. Find the work
done in moving a particle along a curve parametrised by (¢,t%,t%); 0 <t < 1.

1.0

F(7(t)) = 8t2(t?)(t3)2 + 5t3) — 4t(t?)2 = 87 & + 53¢ — 432

1.0

- _ 2 ~ 3 A
Parametric path : r(t) = tx+t°g+1t°2
— 7(t) = &+ 2§+ 3t?2

Work done : / F.dr = /(ﬂ + 10t* — 12t>d
C

(t® + 2t° — 2t6)‘
= 1

0




Example 3

If A= (3x2+6y)i — 14yzj + 20xz°k, evaluate f A-dr from (0,0,0) to (1,1,1) along the follow-
ing paths C; C

(@ x=t, y=t>, z=1°.

(b) the straight lines from (0,0,0) to (1,0,0), then to (1,1,0), and then to (1,1,1).

(¢) the straight line joining (0,0,0) and (1,1,1).

f A dr
C

f[(3x2+6y)i — 14yz j +20x22k )+ (dxi + dyj + dz k)
C

f(3x2+6y) dx — l4yz dy + 20xz> dz
n

v

(a) If x=t¢, y=t2, z= ts, points (0,0,0) and (1,1,1) correspond to ¢t=0 and ¢{=1 respectively. Then

1
fC:A-dr f (32 +6t2)de — 14¢2) () d(E?) + 20() () d(°)
=0
1
0’ dt — 28:°% dt + 60¢° dt

o+
"
o

1 1

(9t°—28:°+60:°°Ydt = 3°—4’ +6:°] = 5
O

-
1)
o



Another Method.
Along C, A = 9t%i— 14t°§ + 20tk and r=xi+yj+zk =¢i +¢2j +:£°k and dr=(i+2¢ +362K)de.

Then f A-dr
C

1
f (9t i — 14:° j + 206" k). (1 + 2t § + 3t k) dt
£=0

1
f 9f° — 28t° + 60t°)dt = 5
O

(b) Along the straight line from (0,0,0) to (1,0,0) y=0, 2=0, dy=0, dz2=0 while x varies from 0 to 1. Then
the integral over this part of the path is

1 1 1
f (3x%+6(0))dx — 14(0)(0)(0) + 20x(0)° (D) = f 3x°dx = x| = 1
x=0

Along the straight line from (1,0,0) to (1,1,0) x=1, 2=0,dx=0,dz=0 while_y varies from 0 to 1.
Then the integral over this part of the path is T

1
f (3(1%+6y)0 — 149(0)dy + 20(1)(0° 0 = 0
y=0



Along the straight line from (1,1,0) to (1,1,1) x=1,y=1,dx=0,dy=0 while z varies from 0 to 1.
Then the integral over this part of the path is

1 1 a 1
f (3(1°+6(1)) 0 — 14(1) 2(0) + 20(1) 2” dz = f 02 ds = 202 [ . 20
2=(

Adding, f A+dr = 1 + 0 + 23_0 - 23
C

(¢) The straight line joining (0,0,0) and (1,1,1) is given in parametric form by x=¢, y=¢t, z=¢. Then

f A-dr
C

1
f (3t2+6t) de — 14(t)(¢)dt + 20(t)(t)2 dt
t=0

1 1
= f (3t%+6t—14t°+20°) dt = f (6t —11£2+20¢°) dt = 133
t=0 t=0



Example 4

If F=3xyi— y°j, evaluate f F-dr where C is the curve in the xy plane, y = 2x*, from (0,0)
to (1,2). C

Since the integration is performed in the xy plane (z=0), we cantake r = x1 + yj. Then

fF-dr = f(3xyi-721)'(dxi+dyj)
C c
= f 3xy dx — y° dy
C

First Method. Let x=t in y= 2x%?. Then the parametric equations of C are x=t, y= 2¢t°. Points (0,0) and
(1,2) correspond to ¢=0 and ¢t=1 respectively. Then .

1 1
fF-dr = f 3(6)(2t%)de — (262)° d(2t?) = f (665 —1625) dt = ._Fé.
¢ ££0 %0
Second Method. Substitute y= 2x° directly, where x goes from 0 to 1. Then
1 1
fF-dr = f 3x(2x°)dx — (2x°) d(2°) = f (6x°—162") dx = -%
¢ X=0 X=0

Note that if the curve were traversed in the opposite sense, i.e. from (1,2) to (0,0), the value of the integral
would have been 7/6 instead of — 7/6.



More example

A force field is given by k7 /|7]?, where k > 0 is a constant and 7 is the position
vector. What is the work done in moving a particle along a curve 7(t) =
(cost,sint); 0 <t < 27.

Along the path, |7(¢)] = V/cos? t +sin?t = 1 and F(7(t)) = k#*/|7]? = x7/|73.
Note: path is a circle and it is closed (start (0) and end points (27)) are same.

Hence, 7 /(t) = (—sint, cost). Therefore, the work done:

o7 27 . .

. PR

/ F(F)).7'(t)dt = /43/ (cost,sint).(—sint,cost)
’ 0

2
= /-4:/ (—costsint + sintcost)dt =0
0

(Eid you expect this? Why? Check that V x &7/|F]> = 0 ]

1

However, take another vector field F = (—yz + xy) from the previgus leg,tu Sn)
27 27 (L .S |
/ F(r(t)7 (H)dt = / (—sint, cost).(—sint, cos t)dt
0 0

2m
= / (sin®t + cos® t)dt = 27
0

Remember what the curl of this field was? It was 22 # 0



Conservative vector field

.12*

If for a vector field ﬁ(az,y,z), V x F = 0, then we have seen that F = V‘g;,—\
where ¢ is a scalar field.
—

Then, /Fdfr /ngdr—/a< 99 L 592 4

y@y &z) (dxx + dyy + dz2)
0 0 0 s p =Py
— L(%dm_l_@_ydy_'_%d'z)/A a >
b 'Y
— [ ds=6(b) - o(@

Fundamental theorem for gradients.
Will discuss later in detail.

if a vector field is expressible as a gradient of a scalar tfunction, then the line

integral would depend only on end points and not depend on path. Such a field
is called conservative.

=




Example:
(a) Show that F = (2xy +2%)i + x®j + 3xz°k is a conservative force field. (b) Find the sca-

lar potential. (¢) Find the work done in moving an object in this field from (1,-2,1) to (3,1,4).

(e) From Problem 11, a necessary and sufficient condition that a force will be conservative is that
curl F = VXF = 0.

i j k
9 9 9o .
Now VxF o= |5 5 %Y
2xy + z° %2 3xz?

Thus F is a conservative force field.

(b) First Method.

By Problem 10. F = V¢ or a-'-;?i + %ij + ‘a—:—bk — (ny-{-zs)i + ij +- SxZQk. Then

o op _ 2 o

(1) Sk = 2xy +2z° (2) -é-—y— = x (3) S, = 3xz2



Integrating, we find from (7), (2) and (3) respectively,

3

qb = ny + xz + f(y,2)
b = x° + g(x,2)
b = xz° + h(x,y)

These agree if we choose f(y,z) =0, g(x,z) = x2°, h(x,y) =x°y sothat ¢ = x°y +x2° to which may
be added any constant.

Second Method.

Since F is conservative, f F-dr is independent of the path C joining (xy,%1,21) and (x,y,z).

C
Using the method of Problem 11(b),

b4 F4
¢(xoyo Z) = f (2")’1 + 21) dx + f xQ dy + f 3x22 dz
X1 Z1

Y1
2 3 x 2 Y 3 z
= x +xz | + x | + xz I
( yi 1) x1 Y Y1 21
2 3 2 3 2 2 3 3
= x + xz -— X - X 2 + x — X + xz — Z
yl 1 1y1 11 Y y1 x 1
= ny + oxz° — :tfy1 -— :ciz;3 = ny + xz° 4 constant



Third Method. F-dr qu-dr =
Then dp = F.dr =
and ¢ = x2y + xz° + constant.

(¢) Work done

Another Method.

From part (b),

Then work done

J,
F.
Fa
J
P
J

F-dr
1

1

o

= dx +

Ox

op

._dy+

Sy

(2xy +2°)ydx + x2dy + 3x22 dz

;a—cbdz

52 i

(2xy dx +x2 dy) + (2° dx + 3xz% dz)

d(ny) + d(xzs) = d(xgy +x23)

(2xy +2°%)dx + x° dy + 3xz2 dz

d(x2 3, _ 2 s |2 2 3|(3’1’4) _
(x“y +x27) = x°y + xz = xy + xz = 202
P (10‘201)
1 1
D(x,y,2) = ny + xz° + constant.

= @(3,1,4) — $(1,-2,1) =

202.



Important massage

Fo
. Prove that if f F.dr is independent of the path joining any two points P, and P, in a given
Py

region, then f F-dr = 0 for all closed paths in the region and conversely.

Let P, AP,BP, (see adjacent figure) be a closed curve. Then

A
f F-dr = f Fodr = f Fedr + f F-dr L
Py AP,BPRy P, AP, PoBP
= fF-dr - fF-dr = 0
P, AP, P, BF, p
1
since the integral from P; to P, along a path through 4 is the same as B

that along a path through B, by hypothesis.

Conversely if fFodr = 0, then

f Fedr = fF~dr + f Fedr = fF-dr — fF-dr = 0

P, AR, BP, Py 4P, P,BP, P, 4P, P, BP,

so that, j Fedr = f F-dr.

P, 4P, P, BB



(a)

(0)

(a)

()

Show that a necessary and sufficient condition that F, dx + F, dy + F3 dz be an exact differ-
ential is that VX F = @ where F = F,i + F,j + F3k.

Show that (y°z® cosx — 4x%z) dx + 223y sinx dy + (3y°z” sinx — x*) dz is an exact dif-
ferential of a function ¢ and find ¢.

%, %, %,

Suppose Fydx + F,dy + F3dz = dp = —a—;dx + -.gy—dy + S, an exact differential. Then

since x,y and z are independent variables,

F1"a¢ ng-?-@ Fs'aqb

T Ox Jy T oz
and so F=F11+F21+F3k=%fi+%j +%‘f—>k = v¢. Thus VXF=V><V¢=0.

Conversely if VXF = 0 then by Problem 11, F = V¢ and so F-dr = Vip.dr = dop, i.e.
Fydx + F,dy + F3dz = d¢, an exact differential.

F = (y223 COSs x —-4x3z)i + 2z3y sinxj + (‘.’»;»'Qz2 sinx —x")k and VXF is computed to be zero,
so that by part (a)
()'223 cosx — 4x°2)dx + 2zsy sinx dy + (3y222 sinx -x4) dz = do

By any of the methods of Problem 12 we find ¢ = y223 sinx — x*z + constant.



Example
F=xyi— 2z} + %k and C is the curve x=t2,y=2t, z=t> from ¢t=0 to ¢t=1

evaluate the line integral F x dr.

Along C, F=2xyi — 2z} + 22K = ZtSi — tsj + 4 k.

Then FXdr = (2t3i — tsj +t4k) X (2ti + 2§ + 3t2k)dt

i i K
|
= r2z3 —2 ot de = [(=30-2Yi + (2°—6")j + (4c+2c)k] de
2% 2 372
1 1 1
and fodr = if (—3:°=2t%Ydt  + jf (—4t°) de  + kf (42 +2t*y de
¢ 0 0 0
9 2 1
~i0! — 33 * pk



Surface Integration



Surface Integrals: How do we define a surface?

z = f(x,y)orx = f(y,z) or y= f(x, z) is one of the standard form to represent
surfaces.

Examples

1. z = constant is a plane parallel to xy plane. 2. 22 =a’ — (c— \/xQ + 92)? is a torus.

Another way to represent: f(x,y,z) = constant




Parametric representation of a surface

Most generally, any arbitrary surface can be parametrically defined in terms of
two real, orthogonal parameters (u, v) and real valued functions x(u,v), y(u, v), z(u, v).

m(u,v) = (x(u,v),y(u,v), z(u, v))

Example

w S
-~ ~
Sel .

o
0 = const. curves

We parametrise the sphere as

(0, p) = (sinf cos p,sinfsinp,cosf); 0 <O <m, 0< ¢ <2m
* For § = 7 (i.e. const.), (0 = 3, ¢) = (cos ¢,sin¢,0) = Circle (lattitude)
x For ¢ = & (i.e. const.), 7(0,¢ = 5) = (0,sin 6, cos)) == Circle (longitude)

u = const. or v = const. curves — Parametric Curves



Concept of area as a vector

Imagine a tiny area (like a postage stamp) in 3 dimensions at some location 7.

What can I do to specity it?

e how big it is? e in which plane it lies?

da square meters (say). in the xy plane (say)

it lies perpendicular to z axis

—> A vector da, of magnitude da and direction along the z axis can be

associated with this area.

But, there are two ways to draw L to zy plane: up or down the z axis.

To further specity the area, to make it an oriented one, we draw arrows that
run around the perimeter of the area in one of the two possible directions.

Area vector will point in the direction following the right hand thumb rule.

Only a planar area can be represented as a vector. Non-Planar areas like a
hemisphere can not be represented by a single vector.

The use of right hand rule in defining areas might remind you of the cross
product and indeed that is true as we will see soon.



Elementary area on a surface

e Let S be a smooth surface: z = f(x,y).

e Project it on zy-plane: R be the projection.

e Choose an elementary area da on S and
let n be a unit vector perpendicular to it.

e Projection of da on xy-plane is dxdy.

codxdy = |n.z| da
~ dxdy

~ g

da

e Hence we can denote da as vector area

For an open two-sided surface, the “outward” normal shows the direction for
the surface. Open surfaces are bounded by curves and “outward” normal is
defined by the right hand rule-if the bounding curve is traversed in the direction
of rotation of a right handed screw, the direction in which the head of screw
moves is the direction of outward normal.



Elementary area: Parametrised surface

Suppose we have a cylinder of radius R = 3 units and parametrised by ¢, z.
(¢, z) = (3cos@,3sing,z); 0 < ¢ <27, —2<2z<2.
Take a point on the cylinder at ¢ =0,z =1 and then 7(¢ = 0,2 =1) = (3,0, 1)

zZ

Choose an elementary area (shown in red) 4
Z w Mot C‘onvw&w\}
C~~——

Then AB = (07/0z)dz and AC = (97/0¢)do
AS & » pod ckomg’vna

= const. lines

Normal vector at A: n = (% ) X (g—f ) Elementary area
Scalar area element da = L@ X ﬁ| = |1|dpdz z = const. lines

Elementary vector area dd = <£> da :'7%@ 4 Z

™\
SN §7 3

H.W. : Complete the calculation for S = (3,0,1). n




e N

N — =< —
Za= >= R
\?: '}C,DSQP/')\(,"")')%V’V'LP% X2 2
= N\
2T L agege ¥
Qe
B AN
v < 2 2 7))
VK N %.S ’\'{)CO’(C‘P xAX
S 00 —’b%’\/‘“‘?(% /Q
n o = | S0\ 4 3o
= aawe (70
(_20/2-'_".> — N —5/;
< > O AHhn -
=\ /\ /\
/‘>\ — ——f(—};) — é—-}f’_«r%
NG a2 |7
d_g? - mnda = =
. N3 A Az



Surface integrals

For scalar fields

If we have a surface parametrised by 7(u, v), then the surface integral of a scalar
field is given by

/ST d&:/RT(F(H’U))da:/RT(F(u,v)) or  OF

_><_

5~ I duduv

For vector fields

If we have a vector field v, then the surface integral of the vector field over the
surface parametrised by 7(u, v) is

/S 7.dd = /R 37 (u, v)).ida = /R (7 (u, v)).

If V" is the velocity of a fluid, then pVv - da is the mass passes
through the area da” per unit time.Therefore the above is
called as the flux of v’.

or  or
_X_

ou  Ov

nduduv




Example
The area of the upper hemispherical surface of radius a, i.e.,
F(x,y,z)=x*+y?’+2°—a>=0;,z>0

Anormal to x°+y%+2° = a° s

Vix2+y?+2%y = 2xi + 2yj + 2:k

Then the unit normal is

ﬁ . i +2y§+2:k  xi+yf+zk

Vax?+4y? +42° a

/_2:'_'2
fa f a x dy dx
. ‘/&72 x2 y'z
)”"Vz -x
2m a
= f f 5__dp, d¢ = 271"02

2.2
@=0 p=0 @=p

where x = pcos @, y = psin® and dydx isreplaced by pdp do.



Example:

Evaluate | i ff.dc‘i, where A = 1824 — 12y + 3yz and S is that part of the plane
2x + 3y + 6z = 12 which is located in the first octant.

The surface S and its projection R are shown in figure.

Flux of vector field
through the surface 20

o
/ Ada =
S

We have already seen that

To find the normal to the surface:

A vector perpendicular to 2x + 3y + 6z = 12 is given by 6(233 + 3y + 62) =
2T + 3y + 62.

. . . . 20 + 3y + 62
Then a unit normal to any point on S is: n = J -

V22432462

3| D
=>
_|_
3| W
Nagt
_|_
|
NS



Example (contd.):

Then n.z2 = (22 +

W

j+92).2= 8 and W — Iizqy.

N\ [1\V)

Also, Aih = (1824 — 129 + 3y2).(22

12—2x—3y
- :

/ Anda = / P
S R |n-2|

, using the fact that z =

The integral is a double integral and to do it, first keep x fixed and integrate

with respect to y from y = 0 (P in the figure) to y = 2322 (Q in the figure);
then integrate w.r.to x from x = 0 to x = 6.

6 (12—2x)/3 6 472
/ / (6 — 2x)dxdy = / (24 — 120+ —)dx =24
=0 Jy=0 =0 3




Example

Evaluate A-ndS, where A = zi +xj — 3y°zk and S is the surface of the cylinder

S
x°+y?=16 included in the first octant between z =0 and z=5.

Project S on the xz plane as in the figure below and call the projection R. Note that the projection of
S on the xy plane cannot be used here. Then

ffA‘ dx dz
|n-j|

A normal to x°+y2 =16 is V(x2+y?) = 2xi+2yj.
Thus the unit normal to S as shown in the adjoining
figure, is

A-ndS

S

2¢i+ 2] _ xi+y])
" Vaxy +(2yY 4

since x2+y?=16 on S.

i+
Aen = (zi+xj-3ygzk)o (%ﬂ) = %(xz +xy)

. xi+yj.j=1
- 4 4"

Then the surface integral equals

iz—;zdxdz = f f ‘/_————_z_+x)a'xdz = (4z +8) dz
R z=0 x=0 16 —x z2=0

90



Example

Evaluate ff ¢n dS where ¢ = gxyz and S is the surface of Problem 20.
S

8 earlier example.
We have f dndS = ff ®n e d.z
In-j|
M R
) xity] .Y . X .
Using n = 2 , MeJ =7 as in Peraghbe}%%m%pe, this last integral becomes
5 4
ff%xz(xi+)’j) dx dz = % f f (x221+xzx/16——x2j)dxdz
R z2=0 «x=0
3 7 64 64
= = —zi +-=zj)dz = 100i + 100j
g f (321 32.1) z 00 00j

z=0



Volume Integration



Volume Integrals

Consider a closed surface in space enclosing a volume. Then,

/?7d7' and /TdT
% %

are examples of volume integrals. Here d7 represents elementary volume.

Example:

Let ¢ = 452y and let V denotes a closed region bounded by the planes 4z +
2y +2=8, x =0, y=0, z = 0. Eyaluate the integral f,, ¢dr.

1 2

Strategy

Keep x and y constant and integrate from z = 0 (base of the column
PQ in figure) to z = 8 — 4x — 2y (top of the column PQ)

Next keep x constant and integrate w.r.t y. This amounts to addition of columns
having bases in the xy plane (z = 0) located anywhere from R (where y = 0)

to S (where 4z + 2y = 8 or y = 4 — 2x), and the integrations from y = 0 to
y =4 —2x.




Volume Integrals

Finally add all slabs parallel to yz plane, which amounts to integration from
r=0tox=2.

/V¢d’7' =

A

Physically the result can be interpreted as the mass of the region )V in which
the density varies according to the formula ¢ = 452%y.



Example
Let F = 2xzi~xj+y°k. Evaluate F dV where V is the region bounded by the sur-

faces x=0, y=0, y=6, z =22, z=4.

The region V is covered (a) by keeping x and y fixed and integrating from z =x2 toz=4 (base to top of
column PQ), (b) then by keeping x fixed and integrating from y=0 to y=6 (R to S in the slab), (¢) finally
integrating from x=0 to x=2 (where z= x° meets z= 4). Then the required integral is

2 6 4
f f f (2xzi—xj+y2k)dzdydx

x=0 vy=0 z=x?

2 rb py 2 pbpu 2 by
2%z dzdydx — j f xdzdydx + k ff y? dzdydx
0 VYo Jx? 0 Yo Yx? 0 Yo vYx?

1281 — 24j + 384k

I
Pte



What did we learn today:

e Generalisation of idea of integration in one variable to many variables.
e Parametrisation of curves and surfaces.
e Line integral of a scalar field f over a curve C whose parametric representation

is given by the path 7(¢) is given by [ fdr = f F(F()|7 ' (t)|dt.

e Line integral of a vector field is given by |, F.dF = fa F(7(t)).7 ' (t)dt.

° Surface irltegral of a scalar field is given by [s f da = [ f(7(u,v))da
| f(7(u,v) l—x—ldudv

o Surface mtegral of a scalar field is given by [s¥.dd = [, U(7(u,v)).nda =

o The volume 1r1tegral of a Scalar and a vector field can be written as fv Tdr
and [, Udr respectively.



