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Fundamental theorem for gradients
• Scalar field �(x, y, z).

Recall from first lecture that the scalar function
� will change by d� = (~r�).d~r1

• Start at a and move infinitesimal distance d~r along path C
to reach ~ra + d~r ~ra is position vector at a,

1

1

• Now, move a little further, by small displacement d~r2.

• The change in � will be ~r�.d~r2.

• In this manner, proceeding by infinitesimal steps we reach point b. At each
step computing gradient of � (at that point) and dot it into the displacement.

• This gives the total change in � as

Z b

a
(~r�).d~r = �(b)� �(a) Fundamental theorem for gradients

Like the ordinary fundamental theorem of calculus, it says that the integral (here line integral) of a 
derivative (here the gradient) is given by the value of the function at the boundaries (a and b)
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R b
a

df(x)
dx dx = f(b)� f(a)



Example
Note that the ~r� is a vector field and sometimes called the gradient field. The
function � will be called a potential function for the field.

If ~F = ~r� is a gradient field where �(x, y) = xy3+x2, then compute I =
R
C
~F .d~r

along the curve C shown in figure.
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⃗∇ × ⃗F = ⃗0
Check: 



Example (contd.)
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Looking at the curve, we see that its equation is y = 2x,
therefore, we parametrise as x = t, y = 2t; 0  t  1.

I =

Z

C

~F .d~r =

Z

C
(y3 + 2x)dx+ 3xy2dy =

Z 1

0
(8t3 + 2t)dt+ 12t32dt =

Z 1

0
(32t3 + 2t)dt = 9

• Method 1: Direct integration: (Line integral)

• Method 2: Applying Gradient theorem
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~F .d~r =
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~r�.d~r = �(1, 2)� �(0, 0) = 9.

If ~F = ~r� is a gradient field where �(x, y) = xy3+x2, then compute I =
R
C
~F .d~r

along the curve C shown in figure.
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Example (contd.)
Same problem with a different choice of path

I could have taken a di↵erent path (in red): (0, 0) ! (1, 0) ! (1, 2).

• Path (ii) (1, 0) ! (1, 2): x = 1, y : 0 ! 2, i.e. dx = 0.

I =

Z

(ii)

~F .d~r =

Z

(ii)

~r�.d~r =

Z 2

0
3xy2dy = 3.1.
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• Path (i) (0, 0) ! (1, 0): y = 0, x : 0 ! 1
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• ) to reach (1, 2) from (0, 0) via paths (i) & (ii): (
R
(i) +

R
(ii))

~F .d~r = 1 + 8 = 9

Same as the one along curve C!

R b
a
~r�.d~r is independent of the path taken



Some important corollaries
? Line integrals in general depend on the path taken from a to b.

Example:
Calculate the line integral of ~A = y2x̂+2x(y+1)ŷ from (1, 1, 0) to (2, 2, 0) along
paths (1) and (2) in figure.
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2We need to calculate
R

~A.d~r, where d~r = dxx̂+ dyŷ + dzẑ.

Red path (path 1):

Horizontal segment: dy = dz = 0, so d~r = dxx̂, y = 1,

~A.d~r = y2dx = dx, Hence
R 2
1
~A.d~r =

R 2
1 dx = 1.

Vertical segment: dx = dz = 0, so d~r = dyŷ, x = 2,

~A.d~r = 2x(y + 1)dy = 4(y + 1)dy, so
R

~A.d~r = 4
R 2
1 (y + 1)dy = 10

Hence, by path (1),
R (2,2,0)
(1,1,0)

~A.d~r = 1 + 10 = 11

Green path (path 2): Here, x = y, i.e. dx = dy and dz = 0. d~r = dxx̂+ dyŷ

) ~A.d~r = x2dx+ 2x(x+ 1)dx = (3x2 + 2x)dx,
R (2,2,0)
1,1,0

~A.d~r =
R 2
1 (3x

2 + 2x)dx = 10 ⃗∇ × ⃗A ≠ ⃗0
Check:



Some important corollaries
? Gradients have the special property that their line integrals are path indepen-

dent:
R b
a
~r�.d~r is independent of the path from a to b.

?
H
~r�.d~r = 0, since the beginning and end points are identical and hence

�(b)� �(a) = 0.

Assume path independence and consider the closed path C in Figure 1. Since
the starting point a and end point b are same, we get

H
~r�.d~r = �(b)��(a) = 0.
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~r�.d~r =
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~r�.d~r = 0

=)
Z

C1

~r�.d~r =

Z
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~r�.d~r

path independence =) line integral around closed path=0

line integral around closed path=0 =) path independence

Assume
H
~r�.d~r = 0 for any closed curve. If C1 and C2 are both paths between

a and b, then C1 � C2 us a closed path. So by hypothesisis



Fundamental theorem for Divergence (Gauss’s Theorem)

x

y

z ~F (x, y, z)Consider a vector field ~F (x, y, z).

Say, flow of water...

We want to find out the
flux of ~F (x, y, z).

To do that, take an infinitesimal
volume element like a cube as shown.

..and look at the opposite
faces (coloured in figure) first.

The right most face (blue) is at a fixed value of y +�y and the flux going out
of this surface is ~F (x, y + �y, z).�~a = ~F (x, y + �y, z).n̂�a = (Fxx̂ + Fy ŷ +
Fz ẑ).(�x�zŷ) = Fy(x, y +�y, z)�x�z.

The left most face (orange) is at a fixed value of y and the incoming flux into
this surface is ~F (x, y, z).�~a = ~F (x, y, z).n̂�a = (Fxx̂+Fy ŷ+Fz ẑ).(��x�zŷ) =
�Fy(x, y, z)�x�z.
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d~a = �x�z ŷ�a = ��x�y ŷ



Fundamental theorem for Divergence (Gauss’s Theorem)
So, the outward flux from the blue face is

Net flux out of the box through these two
opposite (orange and blue) faces

Net flux going out through the sides parallel to yz plane: (@Fx
@x )�x�y�z

Net flux going out through the sides parallel to xy plane: (@Fz
@z )�z�y�x

Summing over all the faces: ~F .n̂�a
���
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~F .n̂da Gauss’s Divergence Theorem

P ~F .n̂�a =
P

(~r.~F )�⌧
Flux over a closed surface can be written as a sum over the surfaces of elemental
volumes that make the volume:

In the limit �x,�y,�z ! 0

~F (x, y +�y, z).�~a = Fy(x, y +�y, z)�x�z
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Fundamental theorem for Divergence (Gauss’s Theorem)
What does it mean?

We want to find the total outward flux of the vector field ~F (~r) across a surface
S that bounds a volume V:

H
S
~F .d~a

d~a is • normal to the local surface element

• points everywhere out of the volume

Volume integrals are easier than the surface integrals: computational e�ciency!

Z

V
(~r.~F )d⌧ =

I

S
~F .n̂daGauss’s Theorem:

Gauss’s theorem tells us that we can calculate the flux of vector field across a
surface S. by considering the total flux generated inside the volume V .,



If we sum over the volume elements, this results in a sum over the surface
elements!

Note: if two elementary surfaces touch,
their d~a vectors are in opposite directions!

Therefore the d~a vectors cancel whenever
there are two surfaces in touch

How to “see” this?

Thus the sum over surface elements gives the overall bounding surface!

Z

V
~r.~F d⌧ =

I

Surface of V
~F .d~a

Seems reasonable! Because, the “boundary” of a line are its endpoints, and
boundary of a volume is a closed surface!
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Example
Verify the divergence theorem when ~F = xx̂ + yŷ + zẑ and S is the surface
composed of the upper half of the sphere of radius a and centred at the origin,
together with the circular disc in xy-plane centred at the origin and of radius a.
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= 1 + 1 + 1 = 3

)
Z

V
~r.~F d⌧ = 3.(vol. of hemisphere) = 3
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3
⇡a3 = 2⇡a3

To check the result, we need to calculate the surface
integral of ~F over the closed surfaces S1 and S2.

Normal vector on S1 (hemisphere) : n̂1 =
xx̂+ yŷ + zẑp
x2 + y2 + z2

=
xx̂+ yŷ + zẑ

a

S1n̂1

S2�ẑ

Normal vector on S2 (disc at the base): n̂2 = �ẑ.

So, the value of the surface integral is a(area of S1) = a(2⇡a2) = 2⇡a3.

Surface integral for the flux through S1 + S2:
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Fundamental theorem for Curl (Stokes’ Theorem)
Let us find the circulation of a vector field ~F (x, y, z) around a closed curve C.
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The fields in the x- direction at bottom and top are

Fx(x, y, z) and Fx(x, y +�y, z) = Fx + @Fx
@y �y.

Fy(x, y, z) and Fy(x+�x, y, z) = Fy +
@Fy

@x �x.

The fields in the y- direction at left and right are

Summing around from bottom in anti-clockwise manner

�C =
X

~F .�~r = Fx(x, y, z)�x+ Fy(x+�x, y, z)�y � Fx(x, y +�y, z)�x� Fy(x, y, z)�y

X
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�x�y = (~r⇥ ~F ).�x�yẑ

= (~r⇥ ~F ).�~a

This implies that curl can be defined as circulation per unit area...
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C
~F .d~r



Fundamental theorem for Curl (Stokes’ Theorem)
Now, if we add these little elementary loops together, the internal line sections
cancel out because the d~r’s are in opposite directions, except on the bounding
line.

This gives the larger bounding contour.

Stokes’ Theorem:

I

C
~F .d~r =

Z

S
(~r⇥ ~F ).d~a

Corollaries:

•
R
(~r⇥ ~F ).d~a depends only on the boundary line, not on the particular surface

used.

•
H
(~r⇥ ~F ).d~a = 0 for any closed surface, since the boundary line, like the mouth

of a balloon, shrinks down to a point and hence the L.H.S of above equation

vanishes.



Example
Verify Stokes’ theorem when S is the rectangle with vertices at (0, 0, 0), (1, 1, 0), (0, 0, 1),
and (1, 1, 1), and ~F = yzx̂+ xzŷ + xyẑ.

Direct Method:
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Line integral

H
C
~F .d~r =

H
C yzdx+ xzdy + xydz

over path (i) + (ii) + (iii) + (iv):
R
(i)

~F .d~r = 0, since z = dz = 0 on (i).
R
(ii)

~F .d~r =
R 1
0 1.1dz = 1, since x = 1, y = 1, dx = 0 = dy.

R
(iii)

~F .d~r =
R
(iii) ydx+ xdy =

R 0
1 xdx+ xdx = �1, since

y = x, z = 1, dz = 0.
R
(iv)

~F .d~r = 0, since x = 0, y = 0, on (iv).
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By Stokes’ Theorem:
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What did we learn today

Surface encloses volume Curve encloses surface Points enclose curve
Z
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In Cartesian Coordinates, with ~r =
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Remember:


