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Orthogonal Curvilinear Coordinate System

Before dealing with more examples of line, surface and volume integrals, it is better to
understand how to convert an integral from one set of coordinates to another

Why different set of coordinates are necessary?

In Physics, symmetry plays a big role and often the symmetry of a problem screams at

you to change the coordinate system to another one where the problem becomes much
easier to handle

- Likely to be Plane (Cartesian), Spherical or Cylindrical polar coordinates

. But can be something more general like (u1, 12, u3) = Curvilinear coordinates

just 2 examples, th re%e more 4
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Applications
Cartesian Spherica| Cylindrical

A
A K Precession of angular momentum
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Recap: Cartesian Coordinate

Recall Cartesian: v = x2 + yy + 22 and dr = dxx + dyy + dzZ, where 2, 1, Z are

constant unit vectors ( . w y Z) * unit veehws.

y lines of constant x
| Length scales properly match: both LHS and RHS has the
dimension of length: dF] = \/dg;2 + dy? + dz?
Y

X Unit vectors 1n Cartesian Coordinates:

T

AN

Z
z,7, 2: constant in direction (direction of increase of x,y and z)

constant in magnitude (norm=1)

lines of constant y

Orthogonality: Z;.2; = 0;; ~
Remember also: z; X T; = €;;,2.

Suppose we want to go to curvilinear coordinates from Cartesian: (z, ¥y, z) — (u1, U2, u3)

Bad News: unlike Cartesian, length scales are screwed up!

r 7£ U1ty + Uzt + uzus hink about u; = r,us = 0, uz = ¢,
dr # duity + dustis + dusiis hen the LHS has dimension of length.
ut RHS does not have the proper

A A \du? + dud o+ dd dimension



From Cartesian to Curvilinear: Transformations

Comnsider the position vector at some point P in space. In Cartesian coordinates:

r=xt +yy+ 22 N
ugz-curve

Now assume, at this point, we have another orthogonal
coordinate system (u1,us2,u3), such that

r=x(ui,us,u3), y=y(uy,us,us), z=2z(u,us, us)

U1-curve

Suppose, above eqns can be solved for uq,uy and us
in terms of z,y, z:

u = uy(x,y, 2), us = us(x,y, 2), ug = ug(x,y, 2)

Given a point P with Cartesian coordinates (x,y, 2), we can associate a unique
set of coordinates (uq,us,us) called Curvilinear Coordinates of P.

The surfaces u; = ¢1, us = ¢ and usz = ¢3 where ¢y, ¢co, c3 are constants —

Coordinate Surfaces

Each pair of these surfaces intersect at Coordinate Curves/lines

If Coordinate surfaces intersect at right angles = Orthogonal Curvilinear



From Cartesian to Curvilinear: unit vectors

We have jU-St seen X = CB(U/l,”UJQ,U,g), Yy = y(u17u27u3)7 &= Z(u17u27u3)
Therefore 7 = x(uy, ug, uz)® + y(uy, us, uz)y + z(uy, us,uz)z ...and dr = dxx + dyy + dzz.

In order to define vector operators in this new coordinate system, we need to determine how the position
vector changes with a change in this new coordinate system.

Ox Ox ox 0y Jy oy 0z 0z 0z
dr = —d —d —dus; dy = ——d —d ——dugz; dz = —d —d —d
‘ 8’&1 U1t 8uQ Uzt 8’&3 “s, 4y 81&1 U1t 8u2 Uzt 8U3 s, a2 8U1 U1t (9u2 Uzt (’9u3 s
Hence,
. ox ox Ox . oy oy oy R 0z 0z 0z
dr = | =—d —d —d - - - - - -
r (5’u1 uy + Dy 2 + s U3) T+ (5’u1 duy + ity dug + s du;),) Y+ (8u1 duy + 9y dug + s du3>

(8:1;A ﬁAJF 0z A>du1+(8xA ﬁAjL 0z A>du2+(@@+ﬁg+£)du3

g T ou Y T au, " 9 T ou T au L W N
or or or
—du —du —d
ouq ! Ous ° Ous 3

= hiéi1duy + heoésdus + hzésdus

where €1, €5, €3 are unit vectors in the direction of increasing uq, us, us.

hi, ha, hg are called Scale Factors.



From Cartesian to Curvilinear: unit vectors

or or or
dF = —duq + =—dus + —d
" 8u1 U1t (9’&2 A 8%3 s

= hiéi1duy + heoésdus + hzésdus

. or or or
8u1 8u2 8u3
Note that a tangent vector to u; curve at P (for which
Uz, U3 are constants) is 8851. Then a unit tangent
vector in this direction is €] = 2= /| 97|
8?1,1 8’&1 i

Similarly é5 = 8‘22 /] 88£| and é3 = 88%2 /| 8812

. __ | .07 |. __ | .07 |. __ | OoF
The scale factors are therefore: hy = |5~|; ha = [5,-|; hs =[5,
. relate the actual displacement in a given coordinate direction to the change

of that coordinate.

Unit vectors here are analogous to the unit vectors in cartesian coordinates but are
unlike them in that they may change directions from point to point.

In a orthogonal curvilinear coordinate the unit vectors are orthogonal
(perpendicular) to each other.




Arc length, Volume element etc...

or or or
dr = —rdul —+ —rdUQ + —rdu3 = hié1duy + heoésduos + hzésdus
ouq Ous Ous

Differential of arc length ds: ds* = dr.dr (why?)

Since é;.6; = 6;;,  ds® = hidu? + hidus + hadus.

Along a u; curve, us and usz are constants so that dr = hidué;.

Hence, the differential arc length ds; along u; curve at P is hidu;.

Similarly dsy = hodus and dss = hsdus along us and ug at P.

Volume element:

Look at the parallelepiped formed out of the vectors hiduiéi, hodusés and
hsdusgés: the volume element is given by:

dr = |(h1dU161) (hgdUg ) X (hgdUng)l = hlhghgduldUQdu;g,

since |é1.(és X €3)].= \ \ \ =1



Gradient operator in Curvilinear coordinate

We have already seen that dr = hi1éi1duy + heoéosduos + hzésdus

The scalar function 7' is now a function of curvilinear coordinates (uq, us, us).

—

Therefore, dT'(uy,us,us3) = VT (uy, us, usz).dr.

0T 0T OT
But, dT(uj,us,u3) = —d —d — dus.
u (u1,u2,us) A, + A, 2 -+ A, s
It follows that:
= 0T 0T oT
VT.(hléldul -+ hQéQdUQ -+ hlégdu;g) — —du1 —+ —dUQ -+ —dU3
ouq Ous dus

The only way it can be satisfied for independent duq,dus and dus is when

—

VT (uy,us,us3) is curvilinear coordinates:

o7 ( ) 18TA+18TA+18TA
U1, U2, U = — —¢€ — —€ €3.
L 72 55 hl 81&1 ! hg 8u2 2 hg (9ug 3




Divergence, Curl and Laplacian in Curvilinear Coordinates

Proceeding in a similar manner, one can check, after a few lines of calculations:

1 (6(h2h3V1) - O(hshiVa) 5(h1h2V3))

Divergence: 6‘7 — | |
5 ({%Ll 8u2 8u3

| hié1 hgéa hsés
Curl: VXV = 0 0 0

Ou1 Ous Ous
hafzhs hiVi  haVs h3‘3/3

1 0 (hohs 0T 0 (hshy OT 0 (hihy OT
hlhzhg 8u1( hl Oul) + 8’&2( h2 (911,2) +8U3( h3 0u3)

Laplacian: V2T =

Quick Check

For Cartesian coordinates, hy = hg = hg =1 and é; =&, é5 =19, é3 = 2. This
reduces the above expressions to the familiar expressions in Cartesian coordinate
where (u1,us,u3) are replaced by (x,y, z).



Specific examples:
Spherical Polar and Cylindrical Polar



Spherical Polar Coordinates

e Cartesian coordinate of P: (x,y, z)

e Position vector of P: 7

e Length of 7 r = |7

—
L]
L]

e Polar angle (angle between z axis and 7): 6

e Azimuthal angle (angle between x axis and
projection of ¥ on xy plane): ¢

e Spherical Polar Coordinate: (r,0,¢)= (u1,us, us)
e Range of r: 0 <r < o0
e Rangeof 0: 0 <60 <~

e Range of ¢: 0 < ¢ < 27

e Transformations: x = rsinf cos ¢, y = rsinf sin ¢,
and z = rcos 6

e 7 = 1rsinfcospr + rsinfsin ¢y + rcosbz

e Inverse transformations: 7 = /a2 + y2 + 22, 0 = sin™



Spherical Polar Coordinates

Coordinate Surfaces:

Recall: coordinate surfaces were defined as surfaces obtained by keeping one of
the coordinates (either u; or us or us constant) constant. Here (uq,us,us) =

(r,0,0).

The coordinate surfaces are:

r = «c¢1, sSpheres having centre at the origin
6 = «co, cones having vertex at origin (line if co = 0 or 7, zy plane if ¢, = 7/2)

¢ = c3, planes through z axis




Spherical Polar Coordinates

Coordinate Curves: <

Recall: coordinate curves were obtained by keeping two

usz = c3 surfaces).

coordinates fixed (intersection of u; = ¢y or us = co or >

X y
Intersection of r = ¢; and 6 = ¢y (¢ — curve) is a circle
Intersection of r = ¢; and ¢ = c3 (0 — curve) is a semi circle
Intersection of # = ¢y and ¢ = c3 (r — curve) is a line
Z)
Constant
¢ lines Vi S Constant
./ '/ r lines

e Lines of constant ¢ : Longitude
e Lines of constant 6 : Lattitude

Constant
6 lines




Spherical Polar Coordinates: Unit vectors and Scale factors

Z

7 = rsin 6 cos 3 + rsin 0 sin ¢ + r cos 02 r
Recall that é; = - 2=, where h; = | 2= |. C é
__ or — or "
Hence hy = h, = |9 = 1, hy = hy = | 35| =, A ;
h3£h¢:|g—;|:rsin9 <
: y
Unit vectors:
o7
€1 = T = g; = sin # cos ¢ + sin @ sin ¢ + cos 62
o
oF
~ - A 00 A . ~ . A
eoa = 0= -2 =cosbcosopr+ cosbsingy —sinbz
571 ckk"\" D ~
és = =22 = _sin¢d + cos i ’L-' d N ,_€.:K
or SN Q.
55 F J

This shows that the unit vectors in spherical polar coordinates are dependent on position

N\

The unit vectors 7, 8 and ¢ are in the directions of increasing r, 6 and ¢
respectively.




Spherical Polar: Line, Volume and Surface elements

or or or
dr = —Tdul + —TdUQ + —Tdu;g — hléldul -+ hgészg + hgégd%g
Ouq Ous Ous

Therefore, for spherical polar dr = rdr + rd00 - rsin 9d¢$ = drr + d00 + d(b(ﬁ

Af’_"'
— - dr Scale factors take care of

the length scale
Volume element: dr = h,hghgdrdfde = r2 sin Odrdfdae.

Surface element: No general expression. Depend on orientation of the surface:

Constant @

di, = hg hedOder = r* sin 0dOd¢# (r constant surface)
ddy = hrhgdrdgd = rsin @drdpd (6 constant surface) ‘ ¢
dZLz = h,hgdrdf¢ = rdrdfo (¢ constant surface)

r Sin Hd?f

rsin @

Find out the expressions for the gradient, divergence, curl and the Laplacian in
the spherical polar coordinate using the general form in curvilinear coordinate.



Gradient:
_ AT, 10T, 1 AT,
T 9r r 90 rsing d¢

vrT

Divergence:

1 9

P2 9y

V.v

-9 1 0 . Bvd,
= r' 9 .
(v + g a0 SOV e s

Curl:

XV = inOvgy) — — — — —(r
rsno a0 o Y T e YT F lsing 9 or " ¢

1] 0 IV, | »
-+ ;[50”6)—%]@-

Laplacian:

= —— ¥y — - an .
rZar \' ar )" rZsino 96 30 ) r2sin®0 3¢




Cylindrical Polar Coordinates

e Cartesian coordinate of P: (x,y, 2)

e Distance of P from 2z axis: s i

e Height: 2 (same as Cartesian)

o Azimuthal angle: ¢ (same as spherical polar)

e Cylindrical Polar Coordinate: (s, ¢,z) = (u1, usz, us)

e Range of s: 0 < 5 < o0

e Range of ¢: 0 < ¢ < 27

e Range of z: —o0 < 2 < 0

e Transformations: © = scos¢, y = ssing, z =z <

e Inverse transformations: s = /22 + 32, ¢ = tan™! (2), z2==2

e Coordinate surfaces and curves: Find out!

N




Cylindrical Polar Coordinates

z
t
< g%;¢ | Lines of

s As usual, the scale factors are given by: constant r
hlEhszl, hQEh¢ZS, thhZ:1

Lin;es <t)f T~ _ :

constant z R =d

— NAE |
\ﬁ )

The unit vectors are:

y
S = COS @I + sin @
~ R R Lines of
¢ = — sin X + cos @ constant 6

Line element: dF = héds + hgode + h.2dz = dsé + sdpd + dz?
Surface element: dds; = hyh,d¢dzs = sdpdzs (for s constant surface)

Volume element: dr = hshyh,dsdpdz = sdsdodz



Gradient:

Divergence:

Curl:

va=(

Laplacian:

1 dv;

s d¢

d g
dz

VAT

)i+

14

5 dS

a1
VI = —

U

£

( aT
S—
ds

10T ~ 0T ,

dv;
ds

)+

S+—-——¢+ —1z

~ 1[0 |
)4”*‘ B [g(qub) -

1 02T  8°T
s 9¢? T 9z




Example

Represent the vector A = zi — 2xj +yk in cylindrical coordinates. Thus determine 4,, 4, and 4,.

From Problem 3,

(Iye, = cospi + sindj (2) ey = —singdi + cosP j (3) e, =k

Solving (1) and (2) simultaneously,

i = cosqbep — sinqbed,, i = sinqbep +cosq5e¢

Then A

zi — 2¢j + yk

= z(cosp e, —sind ey — 20cos P(sindpe, +cosPey + psinde,

1}

(z cos @ — 20 cos @ sin d))ep ~ (z sin ® + 20 cos?9) ey + psing e,

and A, = zcosp — 20cos P sind, 4y = —zsingd — 20 cos’p, A, = psino.



Example
Express the velocity v and acceleration a of a particle in cylindrical coordinates.

In rectangular coordinates the position vector is r = xi +yj + zk and the velocity and acceleration
vectors are

d 4> ver o
v = 2L - i+yi+2k and a = —F" = Xi+%j+7k

dt

Q

In cylindrical coordinates, using Problem 4,

r = xi+yj+zk = (0 cos @)(cos @ e, —~ sin @ es)
+ (0 sin ®)(sin @ e, + cos o> ey t+ z e,

,Oep+ ze

2

o _ 9P e, 4 : -

= —e, +p—L+%Ze, = pe +pde,+ ie,

Then vV =
dt dt P dt dt P

using Problem 5. Differentiating again,

_dr d , s - .
a = ;:2— d—t(pep+p<,be¢+zez)

dep e d8¢
p— t pe, +qu>——+ que¢+ p¢e¢+ z e,

P¢e¢+Pe +P¢( ¢e)+,0¢e¢+,0c;be¢+ Ze,

I

O —pdre, + (0P + 3B drey + e,



Example

Evaluate ﬂf(x2+ y2+ 22) dx dy dz where V is a sphere having center at the origin and ra-

74
dius equal to a.

Do twr w /SFMY"CA‘ COWAL‘VLa.tW'

A
A a‘a Z ) i
[ 41 . o dd
fﬁ
vt . xF Sin® dU A Pdr = v av y s
J 2% o
/ 0
v ) JO‘CP
) ) 0
= 40 - < f]_ﬂ_f*_



What did we learn today:

Symmetry of a problem decides what coordinate to choose.

We introduced the idea of orthogonal curvilinear coordinates.

We realised that the scale factors were necessary to relate changes in arbitrary coordinate to
a length scale.

We calculated the line, surface and volume elements in general in orthogonal curvilinear
coordinates and specialised them to spherical and cylindrical polar coordinates.




