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Spherical polar

Orthogonal Curvilinear Coordinate System

Before dealing with more examples of line, surface and volume integrals, it is better to 
understand how to convert an integral from one set of coordinates to another

Why different set of coordinates are necessary?

In Physics, symmetry plays a big role and often the symmetry of a problem screams at 
you to change the coordinate system to another one where the problem becomes much 

easier to handle 

• Likely to be Plane (Cartesian), Spherical or Cylindrical polar coordinates

just 2 examples, there are more

• But can be something more general like Curvilinear coordinates(u1, u2, u3)
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Spherical Cylindrical



Recall Cartesian: ~r = xx̂+ yŷ+ zẑ and d~r = dxx̂+ dyŷ+ dzẑ, where x̂, ŷ, ẑ are
constant unit vectors

|d~r| =
p

dx2 + dy2 + dz2
Length scales properly match: both LHS and RHS has the

dimension of length:

lines of constant y

lines of constant x

Recap: Cartesian Coordinate

Suppose we want to go to curvilinear coordinates from Cartesian:

Bad News: unlike Cartesian, length scales are screwed up!

Unit vectors in Cartesian Coordinates: 
x̂

ŷ

ẑ
x̂, ŷ, ẑ: constant in direction (direction of increase of x, y and z) and constant
in magnitude (norm 1).

Orthogonality: x̂i.x̂j = �ij
Remember also: x̂i ⇥ x̂j = ✏ijkxk.

x̂
ŷ

ẑ

constant in magnitude (norm=1)

(x, y, z) ! (u1, u2, u3)

~r 6= u1û1 + u2û2 + u3û3

d~r 6= du1û1 + du2û2 + du3û3

|d~r| 6=
q

du2
1 + du2

2 + du2
3

Think about u1 = r, u2 = ✓, u3 = �,
then the LHS has dimension of length,

but RHS does not have the proper

dimension.

✓
d~r =

@~r

@x
dx+

@~r

@y
dy +

@~r

@z
dz

◆
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From Cartesian to Curvilinear: Transformations

Now assume, at this point, we have another orthogonal
coordinate system (u1, u2, u3), such that

x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3)

u1 = u1(x, y, z), u2 = u2(x, y, z), u3 = u3(x, y, z)

Suppose, above eqns can be solved for u1, u2 and u3

in terms of x, y, z:

u1

u2

u3

P

Consider the position vector at some point P in space. In Cartesian coordinates:

~r = xx̂+ yŷ + zẑ

Given a point P with Cartesian coordinates (x, y, z), we can associate a unique
set of coordinates (u1, u2, u3) called Curvilinear Coordinates of P .

u1 = c1

u2 = c2
u3 = c3

The surfaces u1 = c1, u2 = c2 and u3 = c3 where c1, c2, c3 are constants =)
Coordinate surfaces Coordinate Surfaces

Each pair of these surfaces intersect at Coordinate Curves/lines

-curve

-curve

-curve

If Coordinate surfaces intersect at right angles =) Orthogonal Curvilinear



From Cartesian to Curvilinear: unit vectors
x = x(u1, u2, u3), y = y(u1, u2, u3), z = z(u1, u2, u3)We have just seen

Therefore ~r = x(u1, u2, u3)x̂+ y(u1, u2, u3)ŷ + z(u1, u2, u3)ẑ

dz =
@z

@u1
du1 +

@z

@u2
du2 +

@z

@u3
du3dy =

@y

@u1
du1 +

@y

@u2
du2 +

@y

@u3
du3 ;

= h1ê1du1 + h2ê2du2 + h3ê3du3

=

✓
@x

@u1
x̂+

@y

@u1
ŷ +

@z

@u1
ẑ

◆
du1 +

✓
@x

@u2
x̂+

@y

@u2
ŷ +

@z

@u2
ẑ

◆
du2 +

✓
@x

@u3
x̂+

@y

@u3
ŷ +

@z

@u3
ẑ

◆
du3

@~r

@u1
du1

@~r

@u2
du2

@~r

@u3
du3

where ê1, ê2, ê3 are unit vectors in the direction of increasing u1, u2, u3.

h1, h2, h3 are called Scale Factors.

...and d~r = dxx̂+ dyŷ + dzẑ.

dx =
@x

@u1
du1 +

@x

@u2
du2 +

@x

@u3
du3;

d~r =

✓
@x

@u1
du1 +

@x

@u2
du2 +

@x

@u3
du3

◆
x̂+

✓
@y

@u1
du1 +

@y

@u2
du2 +

@y

@u3
du3

◆
ŷ +

✓
@z

@u1
du1 +

@z

@u2
du2 +

@z

@u3
du3

◆
ẑ

⌘
Hence,

In order to define vector operators in this new coordinate system, we need to determine how the position 
vector changes with a change in this new coordinate system.
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u1

u2

u3

P
u1 = c1

u2 = c2
u3 = c3

From Cartesian to Curvilinear: unit vectors

= h1ê1du1 + h2ê2du2 + h3ê3du3

d~r =
@~r

@u1
du1 +

@~r

@u2
du2 +

@~r

@u3
du3

Note that a tangent vector to u1 curve at P (for which
u2, u3 are constants) is @~r

@u1
. Then a unit tangent

vector in this direction is ê1 = @~r
@u1

/| @~r
@u1

|.

) h1ê1 =
@~r

@u1
; h2ê2 =

@~r

@u2
; h3ê3 =

@~r

@u3

ê1

ê2

ê3

Similarly ê2 = @~r
@u2

/| @~r
@u2

| and ê3 = @~r
@u3

/| @~r
@u3

|

The scale factors are therefore: h1 = | @~r
@u1

|; h2 = | @~r
@u2

|; h3 = | @~r
@u3

|

Unit vectors here are analogous to the unit vectors in cartesian coordinates but are 
unlike them in that they may change directions from point to point. 

In a orthogonal curvilinear coordinate the unit vectors are orthogonal 
(perpendicular) to each other.

: relate the actual displacement in a given coordinate direction to the change
of that coordinate.



Arc length, Volume element etc…
= h1ê1du1 + h2ê2du2 + h3ê3du3d~r =

@~r

@u1
du1 +

@~r

@u2
du2 +

@~r

@u3
du3

Di↵erential of arc length ds: ds2 = d~r.d~r (why?)

ds2 = h2
1du

2
1 + h2

2du
2
2 + h2

3du
2
3.Since êi.êj = �ij ,

Along a u1 curve, u2 and u3 are constants so that d~r = h1du1ê1.

Hence, the di↵erential arc length ds1 along u1 curve at P is h1du1.

Similarly ds2 = h2du2 and ds3 = h3du3 along u2 and u3 at P.

h2du2ê2h
3
du

3
ê 3

h 1
du

1
ê 1

Look at the parallelepiped formed out of the vectors h1du1ê1, h2du2ê2 and
h3du3ê3: the volume element is given by:

d⌧ = |(h1du1ê1).(h2du2ê2)⇥ (h3du3ê3)| = h1h2h3du1du2du3,

since |ê1.(ê2 ⇥ ê3)|.

Volume element:

u2
u1

u3

P



Gradient operator in Curvilinear coordinate
We have already seen that = h1ê1du1 + h2ê2du2 + h3ê3du3d~r

The scalar function T is now a function of curvilinear coordinates (u1, u2, u3).

Therefore, dT (u1, u2, u3) = ~rT (u1, u2, u3).d~r.

dT (u1, u2, u3) =
@T

@u1
du1 +

@T

@u2
du2 +

@T

@u3
du3.But,

~rT.(h1ê1du1 + h2ê2du2 + h1ê3du3) =
@T

@u1
du1 +

@T

@u2
du2 +

@T

@u3
du3

It follows that:

The only way it can be satisfied for independent du1, du2 and du3 is when

~rT (u1, u2, u3) is curvilinear coordinates:

~rT (u1, u2, u3) =
1

h1

@T

@u1
ê1 +

1

h2

@T

@u2
ê2 +

1

h3

@T

@u3
ê3.



Divergence, Curl and Laplacian in Curvilinear Coordinates
Proceeding in a similar manner, one can check, after a few lines of calculations:

~r.~V =
1

h1h2h3

⇣@(h2h3V1)

@u1
+

@(h3h1V2)

@u2
+

@(h1h2V3)

@u3

⌘
Divergence:

~r⇥ ~V =
1

h1h2h3

������

h1ê1 h2ê2 h3ê3
@

@u1

@
@u2

@
@u3

h1V1 h2V2 h3V3

������
Curl:

r2� =
1

h1h2h3

"
@

@u1

⇣h2h3

h1

@�

@u1

⌘
+

@

@u2

⇣h3h1

h2

@�

@u2

⌘
+

@

@u3

⇣h1h2

h3

@�

@u3

⌘#
T

T T T
Laplacian:

For Cartesian coordinates, h1 = h2 = h3 = 1 and ê1 = x̂, ê2 = ŷ, ê3 = ẑ. This
reduces the above expressions to the familiar expressions in Cartesian coordinate
where (u1, u2, u3) are replaced by (x, y, z).

Quick Check



Specific examples:
Spherical Polar and Cylindrical Polar



Spherical Polar Coordinates

u = ✓

v = �

x

y

z

P

~r• Cartesian coordinate of P : (x, y, z)

• Position vector of P : ~r

• Polar angle (angle between z axis and ~r): ✓

• Azimuthal angle (angle between x axis and
projection of ~r on xy plane): �

• Length of ~r: r = |~r|

• Spherical Polar Coordinate: (r, ✓,�)⌘ (u1, u2, u3)

• Range of r: 0  r < 1

• Range of ✓: 0  ✓  ⇡

• Range of �: 0  �  2⇡< 2⇡

• Transformations: x = r sin ✓ cos�, y = r sin ✓ sin�,
and z = r cos ✓

• ~r = r sin ✓ cos�x̂+ r sin ✓ sin�ŷ + r cos ✓ẑ

• Inverse transformations: r =
p

x2 + y2 + z2, ✓ = sin�1

p
x2 + y2p

x2 + y2 + z2
, � = tan�1

⇣y
x

⌘



Spherical Polar Coordinates

(line if c2 = 0 or ⇡, xy plane if c2 = ⇡/2)

r = c1, spheres having centre at the origin

✓ = c2, cones having vertex at origin

� = c3, planes through z axis

The coordinate surfaces are:

Coordinate Surfaces:
Recall: coordinate surfaces were defined as surfaces obtained by keeping one of

the coordinates (either u1 or u2 or u3 constant) constant. Here (u1, u2, u3) =

(r, ✓,�).



Spherical Polar Coordinates
Coordinate Curves:

Recall: coordinate curves were obtained by keeping two
coordinates fixed (intersection of u1 = c1 or u2 = c2 or
u3 = c3 surfaces).

x y

z

Intersection of r = c1 and ✓ = c2 (�� curve) is a circle

Intersection of r = c1 and � = c3 (✓ � curve) is a semi circle

Intersection of ✓ = c2 and � = c3 (r� curve) is a line

• Lines of constant � : Longitude
• Lines of constant ✓ : Lattitude

          
Constant
r lines

Constant
� lines

Constant
✓ lines



Spherical Polar Coordinates: Unit vectors and Scale factors
• ~r = r sin ✓ cos�x̂+ r sin ✓ sin�ŷ + r cos ✓ẑ

x

y

z

Recall that êi =
1
hi

@~r
@ui

, where hi = | @~r
@ui

|.

Hence h1 ⌘ hr = |@~r@r | = 1, h2 ⌘ h✓ = |@~r@✓ | = r,

h3 ⌘ h� = | @~r@� | = r sin ✓

Unit vectors:

r̂

�̂

✓̂

This shows that the unit vectors in spherical polar coordinates are dependent on position 

The unit vectors r̂, ✓̂ and �̂ are in the directions of increasing r, ✓ and �
respectively.

ê1 ⌘ r̂ =
@~r
@r��@~r
@r

�� = sin ✓ cos�x̂+ sin ✓ sin�ŷ + cos�ẑ

ê2 ⌘ ✓̂ =
@~r
@✓��@~r
@✓

�� = cos ✓ cos�x̂+ cos ✓ sin�ŷ � sin ✓ẑ

ê3 ⌘ �̂ =
@~r
@���� @~r@�

���
= � sin�x̂+ cos�ŷ

cos ✓ẑ



= h1ê1du1 + h2ê2du2 + h3ê3du3d~r =
@~r

@u1
du1 +

@~r

@u2
du2 +

@~r

@u3
du3

Volume element: d⌧ = hrh✓h�drd✓d� = r2 sin ✓drd✓d�.

Surface element: No general expression. Depend on orientation of the surface:

dar = h✓h�d✓d�r̂ = r2 sin ✓d✓d�r̂ (r constant surface)

da✓ = hrh�drd�✓̂ = r sin ✓drd�✓̂ (✓ constant surface)

da� = hrh✓drd✓�̂ = rdrd✓�̂ (� constant surface)

�

✓

Spherical Polar: Line, Volume and Surface elements

Find out the expressions for the gradient, divergence, curl and the Laplacian in
the spherical polar coordinate using the general form in curvilinear coordinate.

Therefore, for spherical polar d~r = r̂dr + rd✓✓̂ + r sin ✓d��̂ 6= drr̂ + d✓✓̂ + d��̂

Scale factors take care of 
 the length scale

r d~r

r

d✓
rd✓ r

d�

✓

r sin ✓

r sin ✓d�





Cylindrical Polar Coordinates
• Cartesian coordinate of P : (x, y, z)

• Distance of P from z axis: s

• Azimuthal angle: � (same as spherical polar)

• Height: z (same as Cartesian)

• Cylindrical Polar Coordinate: (s,�, z) ⌘ (u1, u2, u3)

• Range of s: 0  s < 1

• Range of �: 0  �  2⇡< 2⇡

• Range of z: �1 < z < 1

• Transformations: x = s cos�, y = s sin�, z = z

• Inverse transformations: s =
p
x2 + y2, � = tan�1

� y
x

�
, z = z

�x
y

z

s

• Coordinate surfaces and curves: Find out!



Cylindrical Polar Coordinates

ŝ

�̂

ẑ

As usual, the scale factors are given by:
h1 ⌘ hs = 1, h2 ⌘ h� = s, h3 ⌘ hz = 1.

The unit vectors are:

ŝ = cos�x̂+ sin�ŷ

�̂ = � sin�x̂+ cos�ŷ

ŝ = cos�x̂+ sin�ŷ

�̂ = � sin�x̂+ cos�ŷ

ẑ = ẑ

Line element: d~r = hsŝds+ h��̂d�+ hz ẑdz = dsŝ+ sd��̂+ dzẑ

Surface element: d~as = h�hzd�dzŝ = sd�dzŝ (for s constant surface)

Volume element: d⌧ = hsh�hzdsd�dz = sdsd�dz
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What did we learn today:

We introduced the idea of orthogonal curvilinear coordinates.

We realised that the scale factors were necessary to relate changes in arbitrary coordinate to 
a length scale.

Symmetry of a problem decides what coordinate to choose.

We calculated the line, surface and volume elements in general in orthogonal curvilinear 
coordinates and specialised them to spherical and cylindrical polar coordinates.

Unlike Cartesian, the unit vectors are in general position dependent, which is a crucial point to 
note.


