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Laplacian:

Quick Recap: 
Orthogonal curvilinear coordinates :(u1, u2, u3), unit vectors :(ê1, ê2, ê3),

scale factors :(h1, h2, h3),

= h1ê1du1 + h2ê2du2 + h3ê3du3d~r
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• Range of r: 0  r < 1 • Range of ✓: 0  ✓  ⇡ • Range of �: 0  �  2⇡< 2⇡

Spherical Polar Coordinates
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• Transformations: x = r sin ✓ cos�, y = r sin ✓ sin�,
and z = r cos ✓

• Transformations: x = r sin ✓ cos�, y = r sin ✓ sin�,
and z = r cos ✓ r̂
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Unit vectors in spherical polar coordinates are dependent on position 
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Spherical Polar Coordinates
Remember the space curves, where two coordinates were kept fixed.

Coordinate Increment
Change in length 
scale along the 

coordinate
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Recall d⌧ = hrh✓h�drd✓d� = r2 sin ✓drd✓d�.

The curved parallelepiped with length r sin ✓d�, width rd✓ and height dr has
the volume d⌧ = (r sin ✓d�)(rd✓)dr = r2 sin ✓drd✓d�.

The way to ``see” this:
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Spherical Polar Coordinates: Grad., Div., Curl, Laplacian:
Using the formulae for gradient, divergence, curl and Laplacian in orthogonal
curvilinear coordinates, we can write them for the spherical polar:
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H. W: Do the same analysis for Cylindrical Polar

(u1, u2, u3) ⌘ (r, ✓,�) and h1 = hr = 1, h2 = h✓ = r, h3 = h� = r sin ✓Recall:

ê1 ⌘ r̂, ê2 ⌘ ✓, ê3 ⌘ �✓̂ �̂



Examples:
In Tutorial 1, we evaluated ~rrn using Cartesian coordinates and the calculation
required quite a few steps. Finally, we arrived at the result ~rrn = nrn�1r̂.
The result can be arrived at in a single step if we take help of Spherical Polar
Coordinates:

Using the form of the gradient operator in Spherical Polar Coordinate:
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In a similar manner, you can show the following:
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Examples:
Calculate ~r⇥ (~r⇥ �̂A�(r, ✓)).

It is evident that the coordinate used is spherical polar coordinates. The �
component of the vector ~A is a function of r, ✓.
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Taking the curl a second time:
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You may encounter this type of calculations when magnetic vector potentials will be discussed



More examples:
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Let us check this result by directly calculating the surface integral
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Check the divergence theorem for the function ~A = r2 sin ✓r̂+4r2 cos ✓✓̂+r2 tan ✓
using the volume of the “ice-cream” cone.
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More examples (contd.):
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The surface consists of two parts:

(i) The “ice cream”: For which r = R; � : 0 ! 2⇡; ✓ : 0 ! ⇡/6
and d~a = R2 sin ✓d✓d�r̂.
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Check the divergence theorem for the function ~A = r2 sin ✓r̂+4r2 cos ✓✓̂+r2 tan ✓
using the volume of the “ice-cream” cone.
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Dirac Delta Function
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At every direction, ~V is directed radially outward.
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However, more problem arises if you try to apply divergence theorem to ~V

The function has large positive divergence.

But…

Suppose, we integrate over a sphere of radius R, entered at origin: the surface
integral is H
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What is happening here? Is divergence theorem wrong??



Divergence of ~V =
r̂

r2

The source of the problem is the point r=0, where the function blows up!

It is true that ~r.~V = 0 everywhere except at the origin. But, right at the origin
the situation is more complicated.

Note that surface integral is independent of R; so if divergence theorem is right
(and it is), we should expect

R
(~r.~V )d⌧ = 4⇡. The entire contribution must

then be coming from the point r = 0.

~r.~V has the bizarre property that it vanishes everywhere except at one point,

and yet its integral over any volume containing that point is 4⇡ =) “No

Ordinary Function”.

Dirac Delta Function



Dirac Delta Function
A real function � on R is called Dirac Delta Function if

�(x) =

⇢
0 if x 6= 0;
1 if x = 0.

and
Z 1

�1
�(x)dx = 1.

“Infinitely high, infinitesimally
 narrow spike with area 1”

In a strict sense, it is not a function and mathematicians would like to call it as
“generalised function” or a “distribution”.

This of course is a heuristic definition. Not well defined at x=0



Then, how to “see” them?
The best way to look at a delta function is as a limit of a sequence of functions.
We give a few such examples:
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For a fixed n, it represents a rectangle of height n and width between � 1
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1
2n . As n ! 1, width decreases but height increases in such a proportion that
the area always remains 1. So, as n ! 1, Rn ! �.
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Dirac Delta Function: Properties
? For a continuous function f(x),
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f(x)�(x)dx = f(0)

This means that for a continuous function f(x), the product f(x)�(x) is zero
everywhere except at x = 0. It follows: f(x)�(x) = f(0)�(x).
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? Scaling : �(kx) =
1

|k|�(x), where k is any constant.

? Although � itself is not a legitimate function, integrals over � are perfectly
acceptable. In fact two expressions involving delta functions (say, D1(x) and
D2(x)) are called equal if
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Infact, this property tells us �(�x) = �(x).



Scaling : �(kx) =
1

|k|�(x), where k is any constant.

Dirac Delta Function: Properties

Proof: Chose an arbitrary test function f(x) and consider the integral:
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Let us get back to the divergence paradox :

~r.
⇣ r̂

r2

⌘
= 4⇡�3(~r)

Dirac Delta Function: in three dimensions
�3(~r) = �(x)�(y)�(z)Generalize in 3-D:
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This 3-D Dirac Delta is zero everywhere except at origin (0,0,0), with its volume integral being 1
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The one and only point where divergence is non-zero is origin.

But do we know the value of the divergence at origin? NO!
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Few examples:
1. Evaluate

R 3
0 x3�(x� 2)dx.

The delta function picks out the value of x3 at the point x = 2, so the integral
is 23 = 8. Note however, if the upper limit had been 1 (instead of being 3),
the answer would be 0, because the spike would then be outside the domain of
integration.

2. Evaluate
R 6
2 (3x

2 � 2x� 1)�(x� 3)dx.

Recall that
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�1 f(x)�(x�a)dx = f(a). Here f(x) = (3x2�2x�1), a = 3 and it

lies between the limits of the integration. Therefore
R 6
2 (3x

2�2x�1)�(x�3)dx =

f(3) = 20.

3. Evaluate
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Change variable x = t/3. Then
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Alternatively, you can use �(3x) = �(x)/3 and proceed accordingly.
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