Physics II: Electromagnetism PH 102

Lecture 5

Bibhas Ranjan Majhi Indian Institute of Technology Guwahati

Bibhas.majhi@iitg.ac.in

January-May 2019

Quick Recap:

Orthogonal curvilinear coordinates $:(u_1, u_2, u_3)$, unit vectors $:(\hat{e}_1, \hat{e}_2, \hat{e}_3)$, scale factors $:(h_1, h_2, h_3)$,

$$h_i \hat{e}_i = \frac{\partial \vec{r}}{\partial u_i} \qquad \hat{e}_i = \frac{\partial \vec{r}}{\partial u_i} / \left| \frac{\partial \vec{r}}{\partial u_i} \right| \qquad h_i = \left| \frac{\partial \vec{r}}{\partial u_i} \right|$$

Orthogonality of unit vectors: $\hat{e}_i \cdot \hat{e}_j = \delta_{ij}$

 $d\vec{r} = h_1\hat{e}_1du_1 + h_2\hat{e}_2du_2 + h_3\hat{e}_3du_3$

Gradient:
$$\vec{\nabla}T(u_1, u_2, u_3) = \frac{1}{h_1} \frac{\partial T}{\partial u_1} \hat{e}_1 + \frac{1}{h_2} \frac{\partial T}{\partial u_2} \hat{e}_2 + \frac{1}{h_3} \frac{\partial T}{\partial u_3} \hat{e}_3$$

Divergence:
$$\vec{\nabla}.\vec{V} = \frac{1}{h_1h_2h_3} \left(\frac{\partial(h_2h_3V_1)}{\partial u_1} + \frac{\partial(h_3h_1V_2)}{\partial u_2} + \frac{\partial(h_1h_2V_3)}{\partial u_3} \right)$$

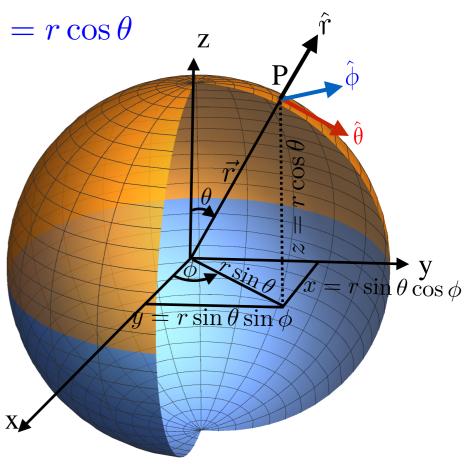
Curl:
$$\vec{\nabla} \times \vec{V} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{e}_1 & h_2 \hat{e}_2 & h_3 \hat{e}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 V_1 & h_2 V_2 & h_3 V_3 \end{vmatrix}$$

Laplacian: $\nabla^2 \mathbf{T} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \mathbf{T}}{\partial u_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_3 h_1}{h_2} \frac{\partial \mathbf{T}}{\partial u_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \mathbf{T}}{\partial u_3} \right) \right]$

Spherical Polar Coordinates

- Range of $r: 0 \le r < \infty$ Range of $\theta: 0 \le \theta \le \pi$ Range of $\phi: 0 \le \phi < 2\pi$
- Transformations: $x = r \sin \theta \cos \phi$, $y = r \sin \theta \sin \phi$, and $z = r \cos \theta$
- Unit vectors:

$$\hat{e}_{1} \equiv \hat{r} = \frac{\frac{\partial \vec{r}}{\partial r}}{\left|\frac{\partial \vec{r}}{\partial r}\right|} = \sin\theta\cos\phi\hat{x} + \sin\theta\sin\phi\hat{y} + \cos\theta\hat{z}$$
$$\hat{e}_{2} \equiv \hat{\theta} = \frac{\frac{\partial \vec{r}}{\partial \theta}}{\left|\frac{\partial \vec{r}}{\partial \theta}\right|} = \cos\theta\cos\phi\hat{x} + \cos\theta\sin\phi\hat{y} - \sin\theta\hat{z}$$
$$\hat{e}_{3} \equiv \hat{\phi} = \frac{\frac{\partial \vec{r}}{\partial \phi}}{\left|\frac{\partial \vec{r}}{\partial \phi}\right|} = -\sin\phi\hat{x} + \cos\phi\hat{y}$$

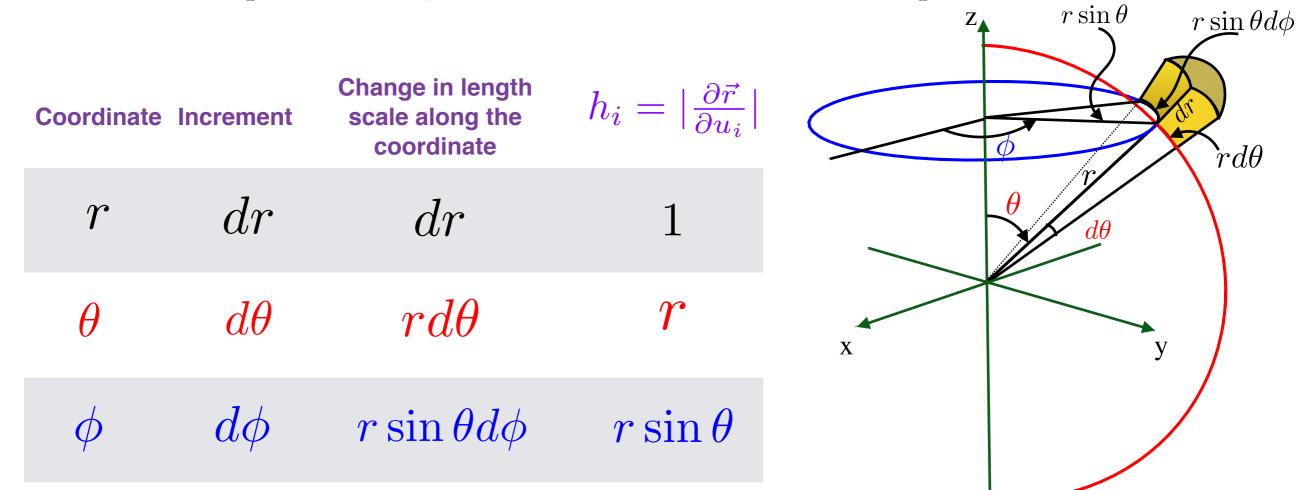


Unit vectors in spherical polar coordinates are dependent on position

$$\frac{\partial \hat{r}}{\partial \theta} = \cos \theta \cos \phi \hat{x} + \cos \theta \sin \phi \hat{y} - \sin \theta \hat{z} = \hat{\theta} \qquad \frac{\partial \hat{r}}{\partial \phi} = \sin \theta (-\sin \phi \hat{x} + \cos \phi \hat{y}) = -\sin \theta \hat{\phi}$$
$$\frac{\partial \hat{\theta}}{\partial \theta} = -\sin \theta \cos \phi \hat{x} - \sin \theta \sin \phi \hat{y} - \cos \theta = -\hat{r} \qquad \frac{\partial \hat{\theta}}{\partial \phi} = \cos \theta (-\sin \phi \hat{x} + \cos \phi \hat{y}) = \cos \theta \hat{\phi}$$
$$\frac{\partial \hat{\phi}}{\partial \phi} = -\cos \phi \hat{x} - \sin \phi \hat{y} = -\sin \theta \hat{r} - \cos \theta \hat{\theta}$$

Spherical Polar Coordinates

Remember the space curves, where two coordinates were kept fixed.



Recall $d\tau = h_r h_\theta h_\phi dr d\theta d\phi = r^2 \sin \theta dr d\theta d\phi$.

The way to ``see" this:

The curved parallelepiped with length $r \sin \theta d\phi$, width $r d\theta$ and height dr has the volume $d\tau = (r \sin \theta d\phi)(r d\theta) dr = r^2 \sin \theta dr d\theta d\phi$.

Spherical Polar Coordinates: Grad., Div., Curl, Laplacian:

Using the formulae for gradient, divergence, curl and Laplacian in orthogonal curvilinear coordinates, we can write them for the spherical polar:

Recall:
$$(u_1, u_2, u_3) \equiv (r, \theta, \phi)$$
 and $h_1 = h_r = 1$, $h_2 = h_\theta = r$, $h_3 = h_\phi = r \sin \theta$
 $\hat{e}_1 \equiv \hat{r}, \ \hat{e}_2 \equiv \hat{\theta}, \ \hat{e}_3 \equiv \hat{\phi}$

Gradient:
$$\vec{\nabla}T(r,\theta,\phi) = \hat{r}\frac{\partial T}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial T}{\partial \theta} + \hat{\phi}\frac{1}{r\sin\theta}\frac{\partial T}{\partial \phi}$$

Divergence:
$$\vec{\nabla}.\vec{V}(r,\theta,\phi) = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2V_r) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \theta}(\sin\theta V_\theta) + \frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}(V_\phi)$$

Curl:

$$\vec{\nabla} \times \vec{V}(r,\theta,\phi) = \frac{1}{r\sin\theta} \left[\frac{\partial}{\partial\theta} (\sin\theta V_{\phi}) - \frac{\partial V_{\theta}}{\partial\phi} \right] \hat{r} + \frac{1}{r} \left[\frac{1}{\sin\theta} \frac{\partial V_{r}}{\partial\phi} - \frac{\partial}{\partial r} (rV_{\phi}) \right] \hat{\theta} + \frac{1}{r} \left[\frac{\partial}{\partial r} (rV_{\theta}) - \frac{\partial V_{r}}{\partial\theta} \right] \hat{\phi}$$

Laplacian:
$$\nabla^2 T(r,\theta,\phi) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \phi} \left(\sin \theta \frac{\partial T}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 T}{\partial \phi^2}$$

H. W: Do the same analysis for Cylindrical Polar

Examples:

In Tutorial 1, we evaluated ∇r^n using Cartesian coordinates and the calculation required quite a few steps. Finally, we arrived at the result $\nabla r^n = nr^{n-1}\hat{r}$. The result can be arrived at in a single step if we take help of Spherical Polar Coordinates:

Using the form of the gradient operator in Spherical Polar Coordinate:

$$\vec{\nabla} \equiv \hat{r}\frac{\partial}{\partial r} + \hat{\theta}\frac{1}{r}\frac{\partial}{\partial \theta} + \hat{\phi}\frac{1}{r\sin\theta}\frac{\partial}{\partial \phi}$$

 $\vec{\nabla}r^n = \hat{r}\frac{\partial}{\partial r}r^n = \hat{r} nr^{n-1}$ (Since *r* has no dependence on θ, ϕ .)

In a similar manner, you can show the following:

$$\vec{\nabla}.(\hat{r}f(r)) = \frac{2}{r}f(r) + \frac{df}{dr}$$
$$\vec{\nabla}.(\hat{r}r^n) = (n+2)r^{n-1}$$
$$\vec{\nabla} \times (\hat{r}f(r)) = 0$$
$$\nabla^2 f(r) = \frac{2}{r}\frac{df}{dr} + \frac{d^2f}{dr^2}$$
$$\nabla^2 r^n = n(n+1)r^{n-2}.$$

Examples:

Remember

Calculate $\vec{\nabla} \times (\vec{\nabla} \times \hat{\phi} A_{\phi}(r, \theta)).$

 $\vec{\nabla} \times \vec{V} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{e}_1 & h_2 \hat{e}_2 & h_3 \hat{e}_3 \\ \frac{\partial}{\partial u_1} & \frac{\partial}{\partial u_2} & \frac{\partial}{\partial u_3} \\ h_1 V_1 & h_2 V_2 & h_3 V_3 \end{vmatrix}$

^

It is evident that the coordinate used is spherical polar coordinates. The ϕ component of the vector A is a function of r, θ .

$$\vec{\nabla} \times (\vec{\nabla} \times \hat{\phi} A_{\phi}(r, \theta)) = \vec{\nabla} \times \frac{1}{r^{2} \sin \theta} \begin{vmatrix} \hat{r} & r\hat{\theta} & r\sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ 0 & 0 & r\sin \theta A_{\phi}(r, \theta) \end{vmatrix}$$
$$= \vec{\nabla} \times \frac{1}{r^{2} \sin \theta} \left[\hat{r} \frac{\partial}{\partial \theta} (r\sin \theta A_{\phi}) - r\hat{\theta} \frac{\partial}{\partial r} (r\sin \theta A_{\phi}) \right]$$

Taking the curl a second time:

$$\vec{\nabla} \times (\vec{\nabla} \times \hat{\phi} A_{\phi}(r, \theta)) = \frac{1}{r^2 \sin \theta} \begin{vmatrix} \hat{r} & r \hat{\theta} & r \sin \theta \hat{\phi} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} (r \sin \theta A_{\phi}) & -\frac{1}{r \sin \theta} \frac{\partial}{\partial r} (r \sin \theta A_{\phi}) & 0 \end{vmatrix}$$
$$= -\hat{\phi} \left[\frac{1}{r} \frac{\partial^2}{\partial r^2} (r A_{\phi}) + \frac{1}{r^2} \frac{\partial}{\partial \theta} \left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} (\sin \theta A_{\phi}) \right) \right]$$

You may encounter this type of calculations when magnetic vector potentials will be discussed

More examples:

Check the divergence theorem for the function $\vec{A} = r^2 \sin \theta \hat{r} + 4r^2 \cos \theta \hat{\theta} + r^2 \tan \theta \hat{\phi}$ using the volume of the "ice-cream" cone.

Divergence of \vec{A} :

$$\vec{\nabla}.\vec{A} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2r^2\sin\theta) + \frac{1}{r\sin\theta}\frac{\partial}{\partial\theta}(\sin\theta 4r^2\cos\theta) + \frac{1}{r\sin\theta}\frac{\partial}{\partial\phi}(r^2\tan\theta)$$
$$= \frac{1}{r^2}4r^3\sin\theta + \frac{1}{r\sin\theta}4r^2(\cos^2\theta - \sin^2\theta) = 4r\frac{\cos^2\theta}{\sin\theta}$$

Therefore,

$$\int (\vec{\nabla}.\vec{A})d\tau = \int \left(4r\frac{\cos^2\theta}{\sin\theta}\right) \left(r^2\sin\theta dr d\theta d\phi\right)$$

$$= \int_{r=0}^{R} 4r^{3}dr \int_{\theta=0}^{\pi/6} \cos^{2}\theta d\theta \int_{\phi=0}^{2\pi} d\phi = (R^{4})(2\pi) \left[\frac{\theta}{2} + \frac{\sin 2\theta}{4}\right] \Big|_{0}^{\pi/6}$$
$$= 2\pi R^{4} \left(\frac{\pi}{12} + \frac{\sin 60^{\circ}}{4}\right) = \frac{\pi R^{4}}{12}(2\pi + 3\sqrt{3})$$

 30°

⊳y

R

Let us check this result by directly calculating the surface integral

More examples (contd.): $\vec{A} = r^2 \sin \theta \hat{r} + 4r^2 \cos \theta \hat{\theta} + r^2 \tan \theta \hat{\phi}_z$

The surface consists of two parts:

(i) The "ice cream": For which
$$r = R$$
; $\phi : 0 \to 2\pi$; $\theta : 0 \to \pi/6$
and $d\vec{a} = R^2 \sin \theta d\theta d\phi \hat{r}$.

Therefore $\vec{A}.d\vec{a} = (R^2 \sin \theta)(R^2 \sin \theta d\theta d\phi) = R^4 \sin^2 \theta d\theta d\phi$.

$$\int \vec{A} \cdot d\vec{a} = R^4 \int_0^{\pi/6} \sin^2\theta d\theta \int_0^{2\pi} d\phi = \frac{\pi R^4}{6} \left(\pi - 3\frac{\sqrt{3}}{2}\right)$$

 30°

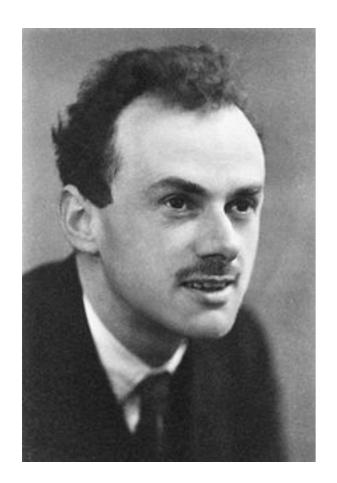
(ii) The "cone":

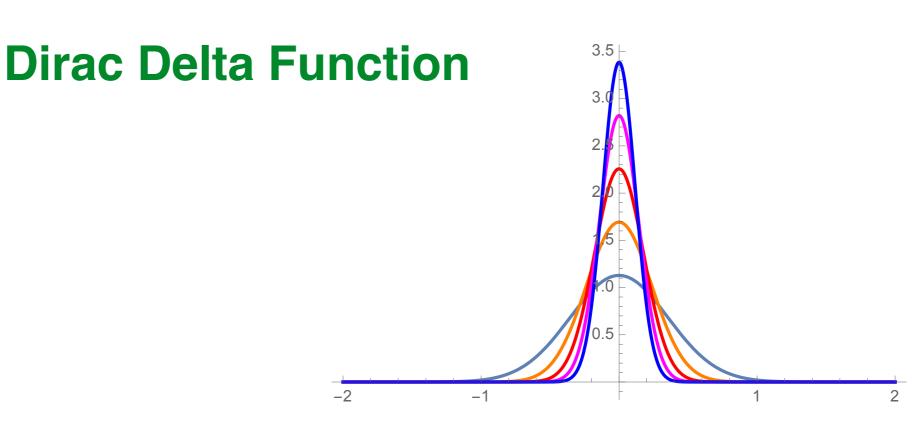
For which $\theta = \pi/6$; $\phi: 0 \to 2\pi$; $r: 0 \to R$ and $d\vec{a} = r \sin \theta d\phi dr \hat{\theta} = \frac{1}{2} r d\phi dr \hat{\theta}$ Therefore $\vec{A}.d\vec{a} = \left(\frac{1}{2} r d\phi dr\right) (4r^2 \cos \theta) = \sqrt{3}r^3 d\phi dr$, (since $\cos(\pi/6) = \sqrt{3}/2$) $\int \vec{A}.d\vec{a} = \sqrt{3} \int_0^R r^3 dr \int_0^{2\pi} d\phi = \sqrt{3}.\frac{R^4}{4}.2\pi = \frac{\sqrt{3}}{2}\pi R^4$ \therefore Total contribution $\int \vec{A}.d\vec{a} = \frac{\pi R^4}{6} \left(\pi - 3\frac{\sqrt{3}}{2}\right) + \frac{\sqrt{3}}{2}\pi R^4$ $= \frac{\pi R^4}{2} \left(\frac{\pi}{3} - \frac{\sqrt{3}}{2} + \sqrt{3}\right) = \frac{\pi R^4}{12}(2\pi + 3\sqrt{3})$ Example

Find the volume of the smaller of the two regions bounded by the sphere $x^2 + y^2 + z^2 = 16$ and the cone $z^2 = x^2 + y^2$.

Use cylindrical coordinates.
Range of coordinates:
$$\phi : \phi = 0 \rightarrow 2\pi$$

 $\Xi : \Xi^2 + S^2 = 16 \Rightarrow \overline{z} = \sqrt{16-S^2}$
 $\overline{z^2 = S^2} \Rightarrow \overline{z} = S$
 $S : S = 0 + 0 - 2S^2 = 16 \Rightarrow S = 2\sqrt{2}$
 $\therefore \int \int \int S dS d\phi dE$
 $\therefore \int \int S dS d\phi dE$
 $= \int d\phi \int S dS \int d\overline{z} = \frac{64\pi}{3} (\sqrt{2}-2)$
 $\phi = 0 - S = 0 - \sqrt{16-S^2}$
 $\therefore Volume = |\int \int \int dv| = \frac{64\pi}{3} (2-\sqrt{2})$





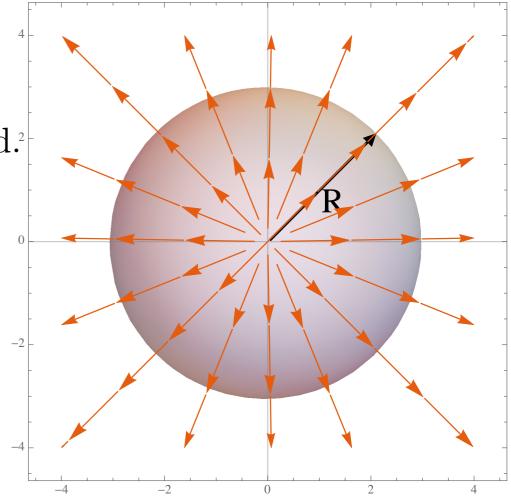
Divergence of $\vec{V} = \frac{\hat{r}}{r^2}$

At every direction, \vec{V} is directed radially outward.²

The function has large positive divergence.

But...

$$\vec{\nabla}.\vec{V} = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{1}{r^2}\right) = \frac{1}{r^2}\frac{\partial}{\partial r}(1) = 0$$
$$\implies \int_{\mathcal{V}}(\vec{\nabla}.\vec{V}) \ d\tau = 0$$



However, more problem arises if you try to apply divergence theorem to \vec{V}

Suppose, we integrate over a sphere of radius R, entered at origin: the surface integral is

$$\begin{aligned} \hat{\delta} V.d\vec{a} &= \int \left(\frac{1}{R^2}\hat{r}\right) . (R^2\sin\theta d\theta d\phi \hat{r}) \\ &= \left(\int_0^\pi \sin\theta d\theta\right) \left(\int_0^{2\pi} d\phi\right) = 4\pi \end{aligned}$$

But divergence theorem states that $\int_{\mathcal{V}} (\vec{\nabla}.\vec{V}) d\tau = \int_{\mathcal{S}} \vec{V}.d\vec{a}$ What is happening here? Is divergence theorem wrong??

Divergence of $\vec{V} = \frac{\hat{r}}{r^2}$

The source of the problem is the point r=0, where the function blows up!

It is true that $\vec{\nabla}.\vec{V} = 0$ everywhere except at the origin. But, right at the origin the situation is more complicated.

Note that surface integral is independent of R; so if divergence theorem is right (and it is), we should expect $\int (\vec{\nabla} \cdot \vec{V}) d\tau = 4\pi$. The entire contribution must then be coming from the point r = 0.

 ∇V has the bizarre property that it vanishes everywhere except at one point, and yet its integral over any volume containing that point is $4\pi \implies$ "No Ordinary Function".

Dirac Delta Function

Dirac Delta Function

A real function δ on \mathbb{R} is called Dirac Delta Function

$$\delta(x) = \begin{cases} 0 & \text{if } x \neq 0; \\ \infty & \text{if } x = 0. \end{cases}$$

and

$$\int_{-\infty}^{\infty} \delta(x) dx = 1.$$

"Infinitely high, infinitesimally narrow spike with area 1"

 $\delta(x)$

- Area 1

x

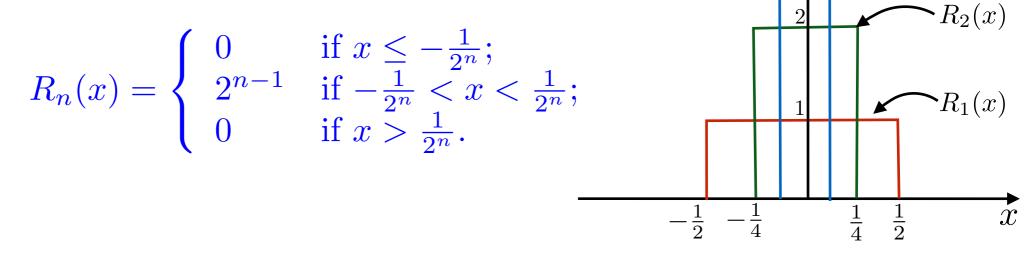
This of course is a heuristic definition. Not well defined at x=0

In a strict sense, it is not a function and mathematicians would like to call it as "generalised function" or a "distribution".

Then, how to "see" them?

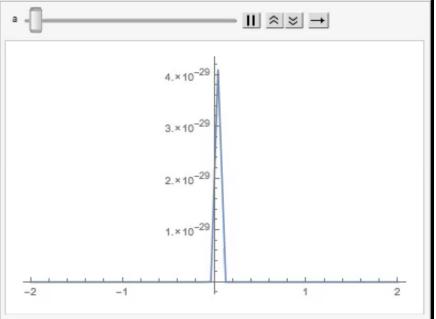
The best way to look at a delta function is as a limit of a sequence of functions. We give a few such examples:

 $\star\,$ We can have a sequence of function as



For a fixed n, it represents a rectangle of height n and width between $-\frac{1}{2^n}$ to $\frac{1}{2^n}$. As $n \to \infty$, width decreases but height increases in such a proportion that the area always remains 1. So, as $n \to \infty$, $R_n \to \delta$.

★ Consider the function $\delta_a(x) = \frac{1}{\sqrt{2\pi a}} e^{-x^2/2a^2}$ defined in such a way that $\int_{-\infty}^{\infty} \delta_a(x) dx = 1$ for any a. Then in the limit $a \to 0$, $\delta_a(x) \to \delta(x)$.



Dirac Delta Function: Properties

★ For a continuous function f(x),

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

This means that for a continuous function f(x), the product $f(x)\delta(x)$ is zero everywhere except at x = 0. It follows: $f(x)\delta(x) = f(0)\delta(x)$.

$$\star \quad \text{Translation:} \qquad \delta(x-a) = \left\{ \begin{array}{l} 0 & \text{if } x \neq a \\ \infty & \text{if } x = a \end{array} \right\} \text{ with } \int_{\infty}^{\infty} \delta(x-a) dx = 1$$

Therefore the first property tells us $\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$

★ Although δ itself is not a legitimate function, integrals over δ are perfectly acceptable. In fact two expressions involving delta functions (say, $D_1(x)$ and $D_2(x)$) are called equal if $\int_{-\infty}^{\infty} f(x)D_1(x)dx = \int_{-\infty}^{\infty} f(x)D_2(x)dx$, for all f(x).

$$\star \quad \text{Scaling}: \ \delta(kx) = \frac{1}{|k|} \delta(x), \text{ where } k \text{ is any constant.}$$

Infact, this property tells us $\delta(-x) = \delta(x)$.

Dirac Delta Function: Properties

Scaling:
$$\delta(kx) = \frac{1}{|k|}\delta(x)$$
, where k is any constant.

Proof: Chose an arbitrary test function f(x) and consider the integral:

$$\int_{-\infty}^{\infty} f(x)\delta(kx)dx$$

Let $y \equiv kx$, so that x = y/k and dx = dy/k. If k > 0, the integration limits are unchanged but if k < 0, the $x = \infty$ implies $y = -\infty$, and vice versa. Restoring the proper order of the limits:

$$\int_{-\infty}^{\infty} f(x)\delta(kx)dx = \pm \int_{-\infty}^{\infty} f(y/k)\delta(y)\frac{dy}{k} = \pm \frac{1}{k}f(0) = \frac{1}{|k|}f(0)$$

Therefore, under the integral sign, $\delta(kx)$ serves the same purpose as $(1/|k|)\delta(x)$:

$$\int_{-\infty}^{\infty} f(x)\delta(kx) = \int_{-\infty}^{\infty} f(x) \left[\frac{1}{|k|}\delta(x)\right].$$

Dirac Delta Function: in three dimensions

Generalize in 3-D: $\delta^3(\vec{r}) = \delta(x)\delta(y)\delta(z)$

This 3-D Dirac Delta is zero everywhere except at origin (0,0,0), with its volume integral being 1

$$\int_{\text{all space}} \delta^3(\vec{r}) d\tau = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x) \delta(y) \delta(z) dx dy dz = 1$$

Generalizing $\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(z)$ in 3-D: $\int_{\text{all space}} f(\vec{r})\delta^3(\vec{r}-\vec{r_0})d\tau = f(\vec{r_0})$

Let us get back to the divergence paradox :

Recall that $\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = 0$, if $\vec{r} \neq 0$.

The one and only point where divergence is non-zero is origin.

But do we know the value of the divergence at origin? NO!

Assume that it is $k\delta^3(\vec{r})$

Divergence theorem $\implies \int_{\mathcal{N}} \left(\vec{\nabla} \cdot \frac{\hat{r}}{r^2} \right) d\tau = \left(\oint_{\mathcal{N}} \frac{\hat{r}}{r^2} \cdot d\vec{a} \right) \implies k \int_{\mathcal{N}} \delta^3(\vec{r}) d\tau = 4\pi \implies k = 4\pi$

$$\vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) = 4\pi\delta^3(\vec{r})$$

Few examples:

1. Evaluate $\int_0^3 x^3 \delta(x-2) dx$.

The delta function picks out the value of x^3 at the point x = 2, so the integral is $2^3 = 8$. Note however, if the upper limit had been 1 (instead of being 3), the answer would be 0, because the spike would then be outside the domain of integration.

2. Evaluate $\int_{2}^{6} (3x^2 - 2x - 1)\delta(x - 3)dx$.

Recall that $\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$. Here $f(x) = (3x^2 - 2x - 1)$, a = 3 and it lies between the limits of the integration. Therefore $\int_{2}^{6} (3x^2 - 2x - 1)\delta(x-3)dx = f(3) = 20$.

3. Evaluate $\int_{-2}^{2} (2x+3)\delta(3x)dx$. Change variable x = t/3. Then $\int_{-2}^{2} (2x+3)\delta(3x)dx = \int_{-\frac{2}{3}}^{\frac{2}{3}} \left(2\frac{t}{3}+3\right)\delta(t)\frac{dt}{3} = 1$

Alternatively, you can use $\delta(3x) = \delta(x)/3$ and proceed accordingly.

4. Evaluate $J = \int_{\mathcal{V}} (r^2 + 2) \vec{\nabla} \cdot \left(\frac{\hat{r}}{r^2}\right) d\tau$. Here \mathcal{V} is a sphere of radius R centred at origin. $J = \int_{\mathcal{V}} (r^2 + 2) 4\pi \delta^3(\vec{r}) d\tau = 4\pi (0+2) = 8\pi$