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Quick Recap:

Orthogonal curvilinear coordinates :(u1, us,u3), unit vectors :(é1, éo, €3),

scale factors :(hy, ha, h3),

. or . or or or
hiei = €; = / h; =
Orthogonality of unit vectors: é;.€; = 0;;
dr = hléldul hQéQdUQ hgégdUg
= 1 0T . 1 0T . 1 0T .

hl 8u1 ‘1 * hg 8u2 27 h3 8u3 e

Gradient: VT (u1,us,uz) =

1 (8(h2h3V1) - O(hshiVa) 3(h1h2V3))

Divergence: 6‘7 — | i
. hl hg h3 8%1 8UQ 8U3
hié1 hoéa hsés

Curl: V xV = 1 9 9 9

Ou1 Oug Ous
hifizhs hiVi haVa  h3V3

Laplacian: V*T =

h1h2h3 8u1 hl ﬁul +8u2 hg 8u2 8u3

1 0 (hghg 8T) 0 (hghl 5’T)+ 0 (h}lgg g;l;
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Spherical Polar Coordinates

e Rangeof r: 0 <r<oo eRangeof §: 0 <O <7 e Range of ¢: 0 < ¢ < 27

e Transformations: £ = rsinf cos¢, y = rsinfsin ¢, and z = r cos . T
e Unit vectors: Y/ 0
o7 0
€1 = T = g;; — sin 0 cos ¢x + sin f sin ¢y + cos 6z
o ~
e = 0= gf; = cos 6 cos ¢px + cos 0 sin ¢y — sin 6z : QC};S¢
|%| 7 singsi
or
€3 = ¢ = ng = — sin X + cos @F
¢
Unit vectors in spherical polar coordinates are dependent on position
or R N or . S . —
5 cos 0 cos px + cos @ sin oy — sinfz = 6 = = sin 0(— sin ¢Z + cos ¢f) = —sin ¢
90 Ng—— .90 in ¢ ) :
- sin 6 cos & — sin @ sin ¢y — cos ) = —r 8_qb = cos 0(— sin @& + cos ¢y) = cos ¢
O .
@ = — CcOS @& — sin ¢y = — sin i — cos 66

0



Spherical Polar Coordinates

Remember the space curves, where two coordinates were kept fixed.

Zp rsin 6 rsin 0do
Change in length or
Coordinate Increment scale along the h’b — ‘ Ou; Q? >
coordinate .
r dr dr 1 ¥
0 do rdf r
X y

0, do  rsinfd¢  rsind

Recall dr = h,hghgydrdfde = r* sin Odrdfde.

The way to "“see” this:

The curved parallelepiped with length rsin 8d¢, width rdf and height dr has
the volume dr = (rsin 0de)(rdf)dr = r* sin drdfde.



Spherical Polar Coordinates: Grad., Div., Curl, Laplacian:

Using the formulae for gradient, divergence, curl and Laplacian in orthogonal
curvilinear coordinates, we can write them for the spherical polar:

Recall: (u1,u2,u3) = (r,0,¢) and hy = h. =1, hg =hg =r, hg = hy = rsiné
0

r, g =40,

€1

or  19r -~ 1 9T

Gradient: VT (r,0,¢) = Ta— 9—@ ¢rsin9 96
B 0 1 1, 1 o,
Di ; . = =~ —(r? '
ivergence:  V.V(r, 6, ¢) r2 Or (r"Ve) + rsin 6 00 (sin 6V) + rsin @ 0¢ (Vo)
Curl:
L 1[0 Vel 1[ 1 oV 0 170 ov, ]
v xV(r.6,¢) = rsinf | 06 (si0.6V) = 8qb] Ty [Siné’ op  Or (Tv(b)] 0+ r [&“(TVG) 90 ] ¢

1 0 oT 1 0 oT 1 0°T
. 2 _ 2 il
Laplacian:  V*T'(r, 6, ¢) (’r ) i r?sin @ ¢ (sm / 00 ) " r2 sin® 0 0¢?

H. W: Do the same analysis for Cylindrical Polar




Examples:

In Tutorial 1, we evaluated vrn using Cartesian coordinates and the calculation

required quite a few steps. Finally, we arrived at the result Vrt = nrtTlp,

The result can be arrived at in a single step if we take help of Spherical Polar

Coordinates:
Using the form of the gradient operator in Spherical Polar Coordinate:
- 9, ~1 0 ~ 1 0
V=r—40-—
706’7°_|_ r89+¢rsin88¢
V" — rﬁgr” — p el (Since r has no dependence on 6, ¢.)
”

In a similar manner, you can show the following:

- 2 d

.00 = 20+

V.(Fr") = (n+2)r"!
Vx (if(r)) = 0

2df d°

Vi) = gt g

V" = n(n+ 1)r" 2




Examples: Remember
| hié1 hgoés hseés
Calculate V x (V x ¢pA,(r,0)). VxV= o e
hihshs
hiVi hoVa  hsVs

It is evident that the coordinate used is spherical polar coordinates. The ¢
component of the vector A is a function of r, 6.

A

3 o 3 | rro T sin Hqg
V X (v X QbAqb(?“, (9)) = VX r2 gin O (‘987“ (‘599 %
0 0 rsinfAy(r,0)
= 1 0, ~0 .
= VX e [r%(r sinfAy) — THE(T sin 9A¢)]
Taking the curl a second time:
| r ro rsin 6o
VX (Vx9dy(r0)) = 2 sin 6 or 58 6%
72 slin 0 (‘?9 7 sin QA(b) o7 811n 0 E??“ (7“ S1I HA(b) 0
~[1 8° 10/ 1 0
— b |Z=—(rA infA
¢ [r or? (rg) + r? 00 (sin@ 00 (sin ¢)>]

You may encounter this type of calculations when magnetic vector potentials will be discussed



More examples:

Check the divergence theorem for the function A = r2 sin 07 +4r2 cos 09 +r2 tan 6(%
using the volume of the “ice-cream” cone.

Divergence of A: i
V.A = p": 6r(r rsin @) + Tsineae(smﬁéh’ cos ) + rsinH@gb(r tan@
= i43 in6 + ! 42(COS2(9—SiI12(9)—4COS29
e reing BATY
Therefore,
T 0 y
/(V.A)dT = / (4r o8 ) (r* sin Odrdfde) [
sin 6
/6
R /6 2T 0 in 20
:/ 4r3d7"/ cos’ Qdﬁ/ dp = (R*)(2m) [— + = ]
r=0 0=0 ¢»=0 2 4 0

m  sin60° mR?
— 2R [ — = (2
TR (12+ . ) — ™+ 3V/3)

Let us check this result by directly calculating the surface integral



More examples (contd.): A= r2sinfi+4r?cos0f+r?tandd
A
The surface consists of two parts:

(1) The “ice cream™: For which r = R; ¢ : 0 — 27m; 0 : 0 — 7w/6
and da = R? sin 0d0dar.
Therefore A.dd = (R2 sin 0)(R? sin 0d0d¢) = R*sin? 0d0d¢.

~ /6 27 4
/A.da: R4/ sin? ede/ do = % <7r3\/7§> 4%
0 0

(11) The “cone’:
For which 6 =7/6; ¢ : 0 — 2m; 7 : 0 — R and da = rsin Hd(bdré = %rdgbdré
Therefore A.dd = (rdgdr) (4r% cos §) = V/3r3dgdr, (since cos(m/6) = V/3/2)

R 27 4
/A.da: \/5/ r3dr/ dod = \/§.RI.27T — ?ﬂR‘l
0 0

30°

>l

. Total contribution / Ada = ——




Example

Find the volume of the smaller of the two regions bounded by the sphere x°+y?+z2 = 16 and the cone

2= 42 442,

USQ cy 'J:thn'c.aj COOchma.h/J.
Range of coordinalis b1 b =0 —2n
2: st o D 2= Jle-gt

2 ‘o
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Dirac Delta Function




. - 7
Divergence of V = —
-

At every direction, V is directed radially outward.’

The function has large positive divergence.

But...

However, more problem arises if you try to apply divergence theorem to 1%

Suppose, we integrate over a sphere of radius R, entered at origin: the surface

integral is =
$V.da= [ (5=7).(R?sin0dldor)

= (J sin0do) ( [y do) =

But divergence theorem states that fv(ﬁ.‘?)dT = |5 V.da ‘

What is happening here? Is divergence theorem wrong??




. - 7
Divergence of V = —
-

The source of the problem 1s the point r=0, where the function blows up!

It is true that V.V =0 everywhere except at the origin. But, right at the origin
the situation is more complicated.

Note that surface integral is independent of R; so if divergence theorem is right
(and it is), we should expect [(V.V)dr = 4m. The entire contribution must
then be coming from the point r = 0.

V.V has the bizarre property that it vanishes everywhere except at one point,
and yet its integral over any volume containing that point is 41 =— “No
Ordinary Function”.

Dirac Delta Function



Dirac Delta Function

A real function d on R is called Dirac Delta Function

5(:1;):{ 0 ifx#0;

\ O(x)

oo ifxz=0.
Area 1

and

“Infinitely high, infinitesimally
narrow spike with area 1”

This of course is a heuristic definition. Not well defined at x=0

In a strict sense, it is not a function and mathematicians would like to call it as
“oeneralised function” or a “distribution”.



Then, how to “see” them?

The best way to look at a delta function is as a limit of a sequence of functions.

We give a few such examples: t
* We can have a sequence of function as
2 RQ(ZE)
_ —1
0 if x > —.
1 1 1 1
2 1 4 2
For a fixed n, it represents a rectangle of height n and width between —=; to

Qn. As n — oo, width decreases but height increases in such a proportlon that
the area always remains 1. So, as n — oo, R,, — 0.

|l Alg| —

* Consider the function d,(x) 2m e~ /29° defined o

in such a way that [~ d,(z)dz =1 for any a. Then o
in the limit a — 0, d,(x) — 0(x). o

||||||||||




Dirac Delta Function: Properties

*

*

For a continuous function f(z),

/ f(a — £(0)

This means that for a continuous function f(z), the product f(z)d(x) is zero
everywhere except at = 0. It follows: f(x)d(x) = f(0)d(x).

Translation: O(xr —a) = { 0 ?f T 7 } with / O(x —a)dr =1

oo Ifx=a -

Therefore the first property tells us / f(x)d(x — a)dr = f(a)

Although ¢ itself is not a legitimate function, integrals over o are perfectly
acceptable. In fact two expressions involving delta functions (say, D;(z) and

Ds(z)) are called equal if [°_ f(z)D1(z)dx = [~ f(x)D2(x)dz, for all f(z).

1

Scaling : d(kx) = Tl

6(x), where k is any constant.

Infact, this property tells us 6(—xz) = d(x).



Dirac Delta Function: Properties

1

Scaling : d(kx) = Tl

d(x), where k is any constant.

Proof: Chose an arbitrary test function f(z) and consider the integral:

/_ O; ()8 (kz)dz

Let y = kx, so that x = y/k and dx = dy/k. If k > 0, the integration limits are
unchanged but if £ < 0, the x = oo implies y = —o0, and vice versa. Restoring
the proper order of the limits:

/ " f@)s(ka)de = = / TR % = £ 1(0) = O

Therefore, under the integral sign, d(kx) serves the same purpose as (1/]k|)d(x):

[ et = [ )| o)




Dirac Delta Function: in three dimensions
Generalize in 3-D: 5° (77) — 5(x)5(y)5(z)

This 3-D Dirac Delta is zero everywhere except at origin (0,0,0), with its volume integral being 1

/ r)dT = / / / 0(z)dxdydz =1
all space

Generalizing ffooo f(x)6(x — a)dx = f(2) in 3-D: / f(P)8*(F — 7o)dT = f(77)
all space

Let us get back to the divergence paradox :

Recall that V. (T%) =0, if 7 # 0.
The one and only point where divergence is non-zero is origin.

But do we know the value of the divergence at origin? NO!

Assume that it is k6 (7)

Divergence theorem —- / ( / 63 (F)dr = dr— k = 4x
V




Few examples:
1. Evaluate f03 2°0(x — 2)dx.

The delta function picks out the value of 22 at the point = 2, so the integral
is 23 = 8. Note however, if the upper limit had been 1 (instead of being 3),
the answer would be 0, because the spike would then be outside the domain of
integration.

2. Evaluate f26(3x2 —2x — 1)6(x — 3)dx.

Recall that [~ f(z)d(z—a)dz = f(a). Here f(z) = (32* -2z —1), a = 3 and it
lies between the limits of the integration. Therefore f26(3:1:2 —2x—1)d(x—3)dx =

f(3) = 20.
3. Evaluate ff2(2x + 3)6(3x)dx.
Change variable = t/3. Then / (22 + 3)0(3x)dx = /3 (2% + 3) (5(75)% =1

) _

2

wlN

Alternatively, you can use d(3x) = §(x)/3 and proceed accordingly.

4. BEvaluate J = fv(r2 + 2)6 (T%) dr. Here V is a sphere of radius R centred at origin.

J = [,(r* + 2)4nd°(F)dr = 4w(0 4+ 2) = 87



