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We will studg the nature of electromagnetic forces in this course




Primary Goal of the Course

To understand a set of 4 equations known as the Maxwell’s equations:
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Electricity and magnetlsm are distinct phenomena so long as charges and currents are
static. Independence of E and B does not appear until there are charges or currents. Only

when there are sufficiently rapid changes in the charges and currents with time, will E and B
depend on each other!




Some important points to note before we start

Each particle in the Universe carries with it a number of properties. These determine how the particle
interacts with each of the four forces. For the force of gravity, this property is mass. For the force of
electromagnetism, the property is called electric charge.

For the purposes of this course, we can think of electric charge as a real number, q € R. Importantly,
charge can be positive or negative. It can also be zero, in which case the particle 1s unaffected by the
force of electromagnetism.

An aside: the charge of quarks 1s actually q = —e/3 and q = 2e/3. This doesn’t change the spirit of the
above discussion since we could just change the basic unit. But, apart from in extreme circumstances,
quarks are confined inside protons and neutrons so we rarely have to worry about this




Electrostatics: Coulomb’s law

Suppose, we have some electric charges, what force do they exert on another charge ?
Coulomb’s law:

Between two charges at rest there 1s a force directly proportional
to the product of the charges and inversely proportional to the
square of the distance between. The force 1s along the straight

line from one charge to another

_ 1 .
[ = Tree C/];z 2 (based on experiments) p—7F_ 7 /
(separation vector)
€0 = 8.85 x 10712 NC—;JQ is called permittivity of free space

Force direction is from source charge to test charge; F is repulsive if charges have same sign
whereas F is attractive if their signs are opposite.

What happens when there are many point charges?



Electrostatics: Superposition Principle

When there are more than two charges present, we must supplement Coulomb’s law with
another fact of nature: the linear superposition principle

The force on any charge is the vector sum of the Coulomb forces from each of the other

charges present.

The force Fjs on a charge ¢; due to another charge, say ¢, is independent of
the presence of a third charge, say ¢s.

Total force on charge g; due to presence of ¢ and g3 is given by

ﬁ=ﬁ12+ﬁ13
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Force on ¢; due to ¢o Force on ¢; due to g3

Can easily be generalised for any number of charges

This is possible as the force is proportional to the value of the source charge

Coulomb’s law and the Principle of Superposition constitute the physical input for

electrostatics. There is nothing more that is required to understand electrostatics!



Electric field

Field point

Let us write the force on () due to g as follows: A

Source point
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2Q = E(7)Q

o F (7) is called the electric field of the source charge q.

e The field is a function of the position 7, since the
separation vector 2 depend on the location of the charge Q (field point).

e While it takes two charges to feel a force, it takes only one charge to produce
a field. A charge at the origin produces the field E(r) = —L=7 at point 7.

Amegr?

e The field due to charge g is non-zero everywhere, not just where there is
another charge to feel the field.

e Think of the field E(F) as a condition in space, produced by the presence of
g. With g present, any charge placed at r will feel a force; while without it, it
will just sit there.



Electric field

e If there are many charges,invoke the superposition principle: the field at some
” due to many charges will be the (vector) sum of the fields due to each one.

ﬁ:ﬁ1+ﬁ2_|_...: <Q1Q¢1_I_QQQ42_I_ )

Ameg \ 22 %
@ q1 ds
= =2 22 )
41eg /L2 L /Lz 2%
1l G ; B}
— /L — g
Q47T60 /LQ QE(T)

e Note that F (), which is a vector quantity, depends on the location of the
field point and is determined by the configurations of the source charges g;.

e To measure a field is easier: put a known test charge ¢ at , equate the force
it experiences to qF. If ¢ = 1C, the force and E are numerically equal but
dimensionally different. That is why “field is the force on a unit charge”.



Continuous charge distributions: Line, Surface, Volume

Our definition of electric field assumes that the source of the field 1s a collection of discrete point
charges qi. However, charge can be distributed continuously over a region also.

Line charge distribution:  Charge is distributed over an arbitrary curve. On an
infinitesimal length element d¢’ along the curve, the
amount of charge is Ad¢’. \: charge per unit length or
line charge density.
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The electric field of a line charge: E(r) = yy— / (/'L2 ) adl’
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Surface charge distribution: Charge is smeared over a surface with charge per unit
area (surface charge density) . The total charge

P
contained in a surface is then given by ¢ = [ oda’
i 24
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The electric field of a surface charge: E (7) = 1 ! / U(/; ) 2da’
TTED



Continuous charge distributions:

Example:

Suppose we have a hemispherical surface of radius R with charge density o(6, ¢) =
oo cos . What is the total charge present on the hemisphere?

Total charge on the hemispherical surface o’ : Q@ = [ , o(7')dd’.

Recall that for spherical symmetry, the elementary area (for constant R surface)

is da’ = R?sin0dfd¢p. Then

2 /2 27
Q= / 0o cos O R sin 0dfdp = JO2R / sin 2«9d(9/ dp = mogR*
a’ 6=0 $=0

Volume charge distribution: If the charge fills a volume, with charge per unit volume
(volume charge density) p, then dq = pdr’.

s Agq
= lim
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The electric field of a volume charge: E(7) = 1 ! / P (/; );LdT/
TTED



Electric fields for continuous charge distribution: Example:

Consider a charged line of length L having uniform line charge density A placed

along the x-axis. Obtain an expression for electric field at an arbitrary point P
in the ry plane.

y (z,y)

Consider an element of line of width dz’ at x’. The distance of

the point P(x,y) from the charge element is
2?2 = (x —a')?% + y?
) ( ) y —L/2 = dﬂ?l L/2 X

and 2 = (x — 2')T + yy

The field at P(x,y) due to element dz’ at (x’,0) is:

- 1 Adx' o 1 Adz’
dlE) = L =
ey 2° dreg [(x — 2')2 + y
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x and y component of the net field E at P:

P /L/ Y (z—al)da’
r - 2 213/2
47750 —L/2 [(x 37/) + Y ] / Can not be evaluated
o \ /L/2 ydz' in a closed form
Y dme _ry2 (2 —2')? + y?]3/2



Electric fields for continuous charge distribution: Example:

However, we can do the integrals for an infinitely long line charge

In this case however, the x-component of the field becomes zero by symmetry

Explicitly ’ (z,9)

A /OO (x — x")dx’ A /OO zdz
E[IZ — — —,—
fneo o -2+ 7P~ T dmeg | (21 208

— 0

— OO

B A /OO ydx' A /OO ydz
Podrey Jooo (a2 + 22 Ameo J_oo (22 +y?)3/2
Substitute z = y tan 6:
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Field of an infinite line charge placed on the x-axis: E =



AN




Two formulas are enough for electrostatics — We are done with this subject

Rest of the lectures will be for learning different tools to evaluate/find tricks to
avold cumbersome calculations



How to “see” the electric field:

Electric field at a distance r due to a charge +q at origin:

~ 1 ¢

E(F) =

,f.
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ihes of E
=

= Constant

The field points radially outward and strength decreases~1/r2

Arrows are longer near the charge

Nicer way to represent the field 1s to connect these arrows to
form field lines.

In doing so, did we throw away information about the strength of the electric field?

NO! Magnitude of the field 1s indicated by the density of the field lines: strong near centre
where field lines are close together and weak farther out, where they are relatively far apart.



Drawing the field lines on 2D surtface may be deceptive
The density of lines passing through ¢ circle of radius r is

n 1
—_— $ A —
27Tr r

But in actual 3D case it is given by

n N 1
471 72




Electric Field Lines:

Field lines begin on +ve charges and end on negative ones. Can’t terminate midair.

Field lines can never cross because if they cross then at the intersection the field would
have two different directions at once!

In this model the flux of vector field E through a surface S: Pgp = / E.da
S

/

“Number of field lines” crossing through S




Flux of the electric field

~ The field strength was proportional to the density of field lines (the number per
Pr = / E.da| unit area), hence E.dd is proportional to the number of lines passing through
> the infinitesimal area da 7

The dot product picks out the component of da along /

the direction of E. It is the area perpendicular to F
that we are thinking of when we say that the density
of field lines is the number per unit area.



Flux through any surface is the measure of charge inside the surface

For the field line that originates on a positive charge (inside the
surface) must pass through the surface or terminates to the negative
charge inside the surface

A charge outside the surface will contribute nothing to the total tlux
through the surface.



For a point charge at the origin the flux of E through a sphere of radius r:

S 1 g .. A ;
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However, the surface need not be a spherical one, any surface

enclosing charge q will have the same flux ¢/ €g




Flux of the/\electric field R Positive flux

Negative flux

The flux through S and S’ is the same: The flux through S vanishes (why?)

What if the surface encloses a bunch of charges instead of just one?

Flux through any surface that encloses bunch of charges

n n ~
]{E.da — Z ( E)i-d_&) — & — XoC Charge enclosed

€0 €0 by the surface

Gauss’s Law:

Flux through an enclosed surface is proportional to the charge enclosed by the surface

The surface S is called a Gaussian surface.



Gauss’s Law 7{ E.di= (enc (Integral form)
S

Using Divergence Theorem, we can convert the integral form to a differential form:

j’i E.dd = /V (V.E)dr Volume charge Oh”"’é

Rewriting (Qene in terms of the charge density p: Qepe = / pdT
1%

/ (ﬁ )dT— / <£> dr = |V.E = L (Differential form)
1% V

€0

U is an arbitrary volume enclosed by a closed surface §

Integral form is applicable to any type of charge distribution, whereas ditterential is valid for

only volume charge distribution



Divergence of the electric field: Direct calculation

Recall that the electric field for a charge distribution was given by:

— 1 4 - /
E(7) = / —p(7 )dTr’
all space

/ TEQ \ 7

r~dependence is p = 0 in the exterior
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contained in 2 =7 —r anyway, so include all space O

1 ) Ly
e /V. (E) p(r )dT
(Not —'/)\‘

= 47163 (2) = 4wé> (7P — 7 )

Hence:

/
. r

But, we have seen

=
I

5

<]1f.!" <]1

v\f‘@»

1
4 53 - =/ — / /
47T€0/ w0 (7 — 7 ") p(T " )dT

1 1 G L
s 53 = 2N — — auss’s Law in
(T 4 )’O(T ) g p(r) differential Form

lﬂ\—wawa) 7Qf“’W‘ Cam b2 obtemed ba N/ QYL Fﬂceé\me

<lu
ey}
|




Applications of Gauss’s Law

Find the field outside a uniformly charged solid sphere of radius R and total
charge q.

Imagine a spherical surface S at » > R (Gaussian Surface).

QGHC

€0

Gaussian Surface.

Gauss’'s Law — ]{E.dﬁz
S

Here Qenc — (.

E and d@ both points radially outward!

/ E.d&z/ |E|da 'S[D L‘\Q‘r |'¢a,ll>, vV Smwma:
° ° = b nolep emdant-
Magnitude of E is constant over the Gaussian Surface. ¢ Alsp © ™ &—Q/\’ ~
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The field outside is same as
Thus : |E|4mr? = Qene _ 1 . p_ 1 ¢ 7 it would have been if all the

€0 €0 Areq 12 charge had been concentrated
at the centre of the sphere.




What about the field inside the sphere?

(Gaussian Surface.

Field inside depends on how the charge is distributed.

4
If the distribution is uniform: ¢ = —7R>p

3

Let us pick Gaussian Surface as a sphere of radius r < R
centered at the origin.

3

Charge enclosed by this sphere 77°p = g3

1 q7“3

Gauss’'s Law — /SE.dc?: e

Again from the symmetry argument:
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Outside the sphere we revert to the inverse-square form. At the surface, r = R,
the electric field is continuous but the derivative dE /dr is not.



