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Fundamental forces in nature

• Gravitational 
• Electromagnetic 
• Weak 
• Strong 

We will study the nature of electromagnetic forces in this course



Primary Goal of the Course
To understand a set of 4 equations known as the Maxwell’s equations:

~r. ~E =
⇢

✏0

~r⇥ ~E = �@B

@t
~r. ~B = 0

~r⇥ ~B = µ0
~J + µ0✏0

@ ~E

@t

Situations described by these  
eqns can be extremely complicated  

and to start with we will simplify  
life by assuming that nothing depends 

on time - “static case”

~r. ~E =
⇢

✏0
~r⇥ ~E = 0

~r. ~B = 0
~r⇥ ~B = µ0

~J

Electrostatics Magnetostatics

Electricity and magnetism are distinct phenomena so long as charges and currents are 
static. Independence of E and B does not appear until there are charges or currents. Only 

when there are sufficiently rapid changes in the charges and currents with time, will E and B 
depend on each other!



Some important points to note before we start

Each particle in the Universe carries with it a number of properties. These determine how the particle 
interacts with each of the four forces. For the force of gravity, this property is mass. For the force of 

electromagnetism, the property is called electric charge. 

For the purposes of this course, we can think of electric charge as a real number, q ∈ R. Importantly, 
charge can be positive or negative. It can also be zero, in which case the particle is unaffected by the 

force of electromagnetism. 

The SI unit of charge is the Coulomb, denoted by C. At a fundamental level, Nature provides us with a 
better unit of charge. This follows from the fact that charge is quantised: the charge of any particle is an 

integer multiple of the charge carried by the electron: e = 1.60217657×10−19 C. i.e. q=n e. 

An aside: the charge of quarks is actually q = −e/3 and q = 2e/3. This doesn’t change the spirit of the 
above discussion since we could just change the basic unit. But, apart from in extreme circumstances, 

quarks are confined inside protons and neutrons so we rarely have to worry about this 



Suppose, we have some electric charges, what force do they exert on another charge ?

Electrostatics: Coulomb’s law

q

~r
0

Q

~r

Coulomb’s law:

Between two charges at rest there is a force directly proportional 
to the product of the charges and inversely proportional to the 
square of the distance between. The force is along the straight 

line from one charge to another

~F =
1

4⇡✏0

qQ

r2 r̂ (based on experiments)

✏0 = 8.85⇥ 10�12 C2

N m2 is called permittivity of free space

What happens when there are many point charges?

~r

~r = ~r � ~r
0

(separation vector)

Force direction is from source charge to test charge; F is repulsive if charges have same sign 
whereas F is attractive if their signs are opposite.

Field point



Electrostatics: Superposition Principle
When there are more than two charges present, we must supplement Coulomb’s law with 

another fact of nature: the linear superposition principle 

The force ~F12 on a charge q1 due to another charge, say q2, is independent of
the presence of a third charge, say q3.

Total force on charge q1 due to presence of q2 and q3 is given by

~F = ~F12 + ~F13

Force on q1 due to q3Force on q1 due to q2

Can easily be generalised for any number of charges

Coulomb’s law and the Principle of Superposition constitute the physical input for 
electrostatics. There is nothing more that is required to understand electrostatics! 

The force on any charge is the vector sum of the Coulomb forces from each of the other 
charges present. 

This is possible as the force is proportional to the value of the source charge



Electric field

Let us write the force on Q due to q as follows:

q

Q

~r

~r
0 ~r

~F =
1

4⇡✏0

qQ

r2 r̂ =
1

4⇡✏0

q

r2 r̂Q ⌘ ~E(~r)Q

~E(~r) is called the electric field of the source charge q.•

• The field is a function of the position ~r, since the
separation vector ~r depend on the location of the charge Q (field point).

• While it takes two charges to feel a force, it takes only one charge to produce
a field. A charge at the origin produces the field ~E(~r) = q

4⇡✏0r2
r̂ at point ~r.

• The field due to charge q is non-zero everywhere, not just where there is
another charge to feel the field.

• Think of the field ~E(~r) as a condition in space, produced by the presence of
q. With q present, any charge placed at ~r will feel a force; while without it, it
will just sit there.

Field point

Source point



Electric field
• If there are many charges,invoke the superposition principle: the field at some
~r due to many charges will be the (vector) sum of the fields due to each one.
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1
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nX

i=1

qi
r2
i

r̂i = Q ~E(~r)

Q
~ri

~r
0

i

qi
q1

q2 ~r

• To measure a field is easier: put a known test charge q at ~r, equate the force
it experiences to q ~E. If q = 1C, the force and ~E are numerically equal but
dimensionally di↵erent. That is why “field is the force on a unit charge”.

• Note that ~E(~r), which is a vector quantity, depends on the location of the
field point and is determined by the configurations of the source charges qi.
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Continuous charge distributions: Line, Surface, Volume
Our definition of electric field assumes that the source of the field is a collection of discrete point 
charges qi. However, charge can be distributed continuously over a region also.

Line charge distribution:

O

~r 0

~r

~E(~r) =
1

4⇡✏0

Z
�(~r 0)

r2 r̂d`0The electric field of a line charge:

Surface charge distribution:

~r 0

~r

O

d`0

~r
P

�

~E(~r) =
1

4⇡✏0

Z
�(~r 0)

r2 r̂da0The electric field of a surface charge:

Charge is distributed over an arbitrary curve. On an

infinitesimal length element d`0 along the curve, the

amount of charge is �d`0. �: charge per unit length or

line charge density.

� = lim
�a0!0

�q

�a0

� = lim
�`!0

�q

�`0 0

Charge is smeared over a surface with charge per unit
area (surface charge density) �. The total charge
contained in a surface is then given by Q =

R
S �da0.q =

R
�da0



Continuous charge distributions:

Volume charge distribution:

Example:
Suppose we have a hemispherical surface of radiusR with charge density �(✓,�) =
�0 cos ✓. What is the total charge present on the hemisphere?

Total charge on the hemispherical surface a0 : Q =
R
a0 �(~r 0)da0.

Recall that for spherical symmetry, the elementary area (for constant R surface)
is da0 = R2 sin ✓d✓d�. Then

Q =

Z

a0
�0 cos ✓R

2 sin ✓d✓d� =
�0R2

2

Z ⇡/2

✓=0
sin 2✓d✓

Z 2⇡

�=0
d� = ⇡�0R

2

If the charge fills a volume, with charge per unit volume
(volume charge density) ⇢, then dq = ⇢d⌧ 0.

⇢ = lim
�⌧ 0!0

�q

�⌧ 0

d⌧ 0

~r

P

~r 0

~r

O The electric field of a volume charge: ~E(~r) =
1

4⇡✏0

Z
⇢(~r 0)

r2 r̂d⌧ 0



Electric fields for continuous charge distribution: Example:
Consider a charged line of length L having uniform line charge density � placed

along the x-axis. Obtain an expression for electric field at an arbitrary point P
in the xy plane.

Consider an element of line of width dx0 at x0. The distance of
the point P (x, y) from the charge element is

r2 = (x� x0)2 + y2

and ~r = (x� x0)x̂+ yŷ

d ~E =
1

4⇡✏0

�dx0

r3
~r =

1

4⇡✏0

�dx0

[(x� x0)2 + y2]3/2
[(x� x0)x̂+ yŷ]

Ex =
�

4⇡✏0

Z L/2

�L/2

(x� x0)dx0

[(x� x0)2 + y2]3/2

Ey =
�

4⇡✏0

Z L/2

�L/2

ydx0

[(x� x0)2 + y2]3/2

The field at P (x, y) due to element dx0 at (x0, 0) is:

x and y component of the net field ~E at P:

dx0

P (x, y)

x

y

~r~r

~r0�L/2 L/2

Can not be evaluated 
in a closed form 



Electric fields for continuous charge distribution: Example:

dx0

P (x, y)

x

y

~r~r

~r0

However, we can do the integrals for an infinitely long line charge

In this case however, the x-component of the field becomes zero by symmetry

Ex =
�

4⇡✏0

Z 1

�1

(x� x0)dx0

[(x� x0)2 + y2]3/2
= � �

4⇡✏0

Z 1

�1

zdz

(z2 + y2)3/2

= 0

Explicitly

Ey =
�

4⇡✏0

Z 1

�1

ydx0

[(x� x0)2 + y2]3/2
=

�

4⇡✏0

Z 1

�1

ydz

(z2 + y2)3/2

(where z = x� x0)

Substitute z = y tan ✓:

=
�

4⇡✏0

Z ⇡/2

�⇡/2

y2 sec2 ✓

y3 sec3 ✓
d✓ =

�

4⇡✏0

Z ⇡/2

�⇡/2
cos ✓d✓ =

�

2⇡✏0y

Field of an infinite line charge placed on the x-axis: ~E = �
2⇡✏0y

ŷ
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Two formulas are enough for electrostatics — We are done with this subject

Rest of the lectures will be for learning different tools to evaluate/find tricks to 
avoid cumbersome calculations



How to “see” the electric field:

-� -� � � �

-�

-�

�

�

�
Electric field at a distance r due to a charge +q at origin:

~E(~r) =
1

4⇡✏0

q

r2
r̂

The field points radially outward and strength decreases~1/r2

Nicer way to represent the field is to connect these arrows to 
form field lines.

In doing so, did we throw away information about the strength of the electric field?

NO! Magnitude of the field is indicated by the density of the field lines: strong near centre 
where field lines are close together and weak farther out, where they are relatively far apart.

Arrows are longer near the charge



Drawing the field lines on 2D surface may be deceptive 
The density of lines passing through c circle of radius r is 

n
2πr

⇒ ∼
1
r

But in actual 3D case it is given by 
n

4πr2
⇒ ∼

1
r2



Electric Field Lines:

Field lines begin on +ve charges and end on negative ones. Can’t terminate midair.

Field lines can never cross because if they cross then at the intersection the field would 
have two different directions at once!

In this model the flux of vector field ~E through a surface S: �E ⌘
Z

S

~E.d~a

“Number of field lines” crossing through S



�E ⌘
Z

S

~E.d~a
The field strength was proportional to the density of field lines (the number per
unit area), hence ~E.d~a is proportional to the number of lines passing through
the infinitesimal area d~a

d~a

~E

The dot product picks out the component of d~a along
the direction of ~E. It is the area perpendicular to ~E
that we are thinking of when we say that the density
of field lines is the number per unit area.

Flux of the electric field



Flux through any surface is the measure of charge inside the surface 

For the field line that originates on a positive charge (inside the 
surface) must pass through the surface or terminates to the negative 

charge inside the surface

A charge outside the surface will contribute nothing to the total flux 
through the surface.



~r
I

~E. ~da =
1

4⇡✏0

I
q

r2
r̂.(r2 sin ✓d✓d�)r̂ =

q

✏0

For a point charge at the origin the flux of E through a sphere of radius r:

However, the surface need not be a spherical one, any surface 
enclosing charge q will have the same flux q/✏0



Flux of the electric field

+q +q

The flux through S vanishes (why?)The flux through S and S′ is the same:
q

✏0

Negative flux

Positive flux

I
~E. ~da =

nX

i=1

⇣I
~Ei. ~da

⌘
=

nX

i=1

qi
✏0

Flux through any surface that encloses bunch of charges

What if the surface encloses a bunch of charges instead of just one?

=
Qenc

✏0

Gauss’s Law: 
Flux through an enclosed surface is proportional to the charge enclosed by the surface

Charge enclosed 
by the surface

= 0

The surface S is called a Gaussian surface.



Gauss’s Law
I

S
~E.d~a =

Qenc

✏0
(Integral form)

Using Divergence Theorem, we can convert the integral form to a differential form: 
I

S
~E.d~a =

Z

V
(~r. ~E)d⌧

Rewriting Qenc in terms of the charge density ⇢: Qenc =

Z

V
⇢d⌧

I

S
~E.d~a =

Z

V
(~r. ~E)d⌧ =

Z

V

✓
⇢

✏0

◆
d⌧ =) ~r. ~E =

⇢

✏0
(Differential form)

is an arbitrary volume enclosed by a closed surface ν 𝒮

Integral form is applicable to any type of charge distribution, whereas differential is valid for 
only volume charge distribution



Divergence of the electric field: Direct calculation
Recall that the electric field for a charge distribution was given by:

~E(~r) =
1

4⇡✏0

Z

all space

r̂
r2 ⇢(~r

0
)d⌧ 0

d⌧ 0

~r

P

~r 0

~r

O

~r-dependence is
contained in ~r = ~r � ~r

0
⇢ = 0 in the exterior

anyway, so include all space

~r. ~E =
1

4⇡✏0

Z
~r.

✓ r̂
r2

◆
⇢(~r

0
)d⌧ 0Hence:

=
1

✏0
⇢(~r)

~r.

✓ r̂
r2

◆
= 4⇡�3(~r) = 4⇡�3(~r � ~r 0)But, we have seen

~r. ~E =
1

4⇡✏0

Z
4⇡�3(~r � ~r 0)⇢(~r 0)d⌧ 0

=
1

✏0

Z
�3(~r � ~r 0)⇢(~r 0)d⌧ 0

)

Gauss’s Law in 
differential Form



Applications of Gauss’s Law
Find the field outside a uniformly charged solid sphere of radius R and total
charge q.

Imagine a spherical surface S at r > R (Gaussian Surface).

Gauss0s Law =)
I

S
~E.d~a =

Qenc

✏0

Here Qenc = q.

~E and d~a both points radially outward!

Magnitude of ~E is constant over the Gaussian Surface.

Gaussian Surface.

)
Z

S
| ~E|da = | ~E|

Z

S
da = | ~E|4⇡r2

)
Z

S
~E.d~a =

Z

S
| ~E|da

Thus : | ~E|4⇡r2 =
Qenc

✏0
=

q

✏0
=) ~E =

1

4⇡✏0

q

r2
r̂

The field outside is same as  
it would have been if all the 

charge had been concentrated  
at the centre of the sphere. 

R

R



What about the field inside the sphere?
Field inside depends on how the charge is distributed.

If the distribution is uniform: q =
4

3
⇡R3⇢

Let us pick Gaussian Surface as a sphere of radius r < R
centered at the origin.

Charge enclosed by this sphere 4
3⇡r

3⇢ = q r3

R3

Gauss0s Law =)
Z

S
~E.d~a =

1

✏0

qr3

R3

Again from the symmetry argument:
Z

S
~E.d~a = | ~E|

Z

S
da = | ~E|4⇡r2 = 1

✏0

qr3

R3

) ~E(~r) =
qr

4⇡✏0R3
r̂

Outside the sphere we revert to the inverse-square form. At the surface, r = R,

the electric field is continuous but the derivative dE/dr is not.

2 4 6 8 10
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R = 3r < R r > R

~E(~r)

r

Gaussian Surface.


