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Electric field for infinite line charge
and ~r = (x� x0)x̂+ yŷ
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The field at P (x, y) due to element dx0 at (x0, 0) is:
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Recap:

Field of an infinite line charge placed on the x-axis: ~E = �
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Gauss’s Law: More examples:

+ 
+ 
+ 
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+ 
+
+ Gaussian cylinder

If you like you could consider a solid cylinder with uniform
charge density and then send radius to zero.

•

want to know the electric field due to this line of charge•

Our set-up has cylindrical symmetry.•

• Choose Gaussian surface to be a cylinder of height `
and width s

Field for a line charge: Line charge density �•
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✏0
Qenc =

1
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• By symmetry the electric field points in the radial direction, away from the
line. Denote this vector in cylindrical polar coordinates ~E = E(s)ŝ

• Two end caps of Gaussian surface don’t contribute to the integral because
their normal points in the ẑ direction and ẑ.ŝ = 0.
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Field due to a line charge drops off more slowly (~1/r) than a point charge (~1/r2)

Infinite line charge



Electric field for infinite surface charge
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Draw ? to the plane passing through P on which we want the field.

Find contribution d ~E from each ring and integrate over all rings.
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Set r = au, i.e. dr = adu, E =
2⇡�
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The integral is 1 as can be seen by choosing 1 + u2 = t,

• Symmetry: Electric field at a height a should be
independent of two coordinates parallel to plane.

• Symmetry: Electric field should always be directed
perpendicular to the plane.

Why? Dimensional argument. Geometric argument.

Divide ring into concentric rings of radius r and width dr.

Field does not decrease as we move away from the plane. It is independent of “a”
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Gauss’s Law: More examples: Infinite plane with surface charge
Field for a surface charge: • Surface charge density �

• Choose Gaussian surface to be a Gaussian “pillbox”

• Extending equal distances above and below the plane.

• It may also be cylindrical shaped
~E

~E

• Symmetry =) field is perpendicularly away from plane
with the same magnitude at each point above and below.
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• ) The top and bottom surfaces yield

Z
~E.d~a = 2A| ~E|

A

(A : area of the lid of “pillbox”)

• side surfaces contribute nothing. Hence
~E =

�

2✏0
n̂

where n̂ is unit vector pointing away from the surface.

The result is independent of how far away you are! The more you move farther away from the 
plane, more and more charge comes to your field of view and this compensates the diminishing 

influence of any particular piece. 



Curl of the Electric Field
Suppose a point charge q is placed at the origin. Then the electric field at a
point P which is at a distance ~r is
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Now the curl of the electric field ~E will be
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Similarly the other components = 0

The curl of the electromagnetic field is 
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Using Cartesian Using Spherical Polar



Curl of the Electric Field
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A look at the electric field lines for a point charge will tell you that the curl of
the electric field is zero!

Let us be a bit more rigorous and calculate the line integral of this field from

some point a to some other point b
R b
a
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This integral around a closed path is evidently zero, since ra = rb for a closed
path =)
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Applying Stoke’s theorem ~r⇥ ~E = 0
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Curl of the Electric Field (General case)

~r 0

⇢(~r 0)
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~r

P~r � ~r 0
Extending the result to arbitrary charge distribution ⇢(~r 0):
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We need to take the curl with respect to the variable ~r:
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Recall

Curl of an electric field is always zero

Extending the result to arbitrary charge distribution ⇢(~r 0):
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We need to take the curl with respect to the variable ~r:
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Electric Potential
Electric field ~E is not just any vector field: it is a special type of field whose
curl is zero.

-2 -1 0 1 2

-2

-1

0

1

2
Ex: ~E = �yx̂+ xŷ can not be an electric field
since its curl is given by 2ẑ.

We are going to use this special property of ~E to reduce
a vector problem (finding ~E) to a much simpler
scalar problem.

Any vector whose curl is zero is equal to the gradient of some scalar!

~r⇥ ~E = 0 =) ~E = �~rV



Electric Potential
~r⇥ ~E = 0 =) the line integral of ~E around any closed loop is zero by Stoke’s
theorem. Because

H
~E.d~̀= 0, the line integral of ~E from a to b is the same for

all path.
Because of the fact the line integral is independent of the path, we define a
function
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another path

standard reference pointelectric potential

Using fundamental theorem for gradients : V (b)� V (a) =
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Potential di↵erence between a and b

~E = �~rV
di↵erential form of V (r) = �

R r
O

~E.d~̀

Potential di↵erence is
independent of the
reference point O



Electric Potential: Some comments
If you know V , you will get ~E since ~E = �~rV .

How can one function (V ) contain all the information that three independent

functions (components of ~E) carry?

The three components of ~E are not independent. They are interrelated by the
condition ~r⇥ ~E = 0.
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@y
=

@Ey

@x
,

@Ez

@y
=

@Ey

@z
,

@Ex

@z
=

@Ez

@x

The components are related as:



Electric Potential: Some comments
The reference point O is completely arbitrary. Changing reference point is same
as adding a constant C to the potential.

Note: adding a constant to the potential will not a↵ect the potential di↵erence
between two points

V̄ (b)� V̄ (a) = V (b)� V (a)

where C is the line integral of ~E from the old reference point O to the new one
O

0
.

V̄ (r) = �
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0
~E.d~̀= �

Z
O

O
0
~E.d~̀�

Z r

O

~E.d~̀= C + V (r)

~rV̄ = ~rVSince the derivative of a constant is zero :

All V ’s, di↵ering only in their choice of reference point correspond to the same
field ~E.

Like the electric field, potential also obeys the superposition principle : potential
at any point is the sum of the potentials due to all the source charges separately
: V = V1 + V2 + · · ·

Choosing a reference point is equivalent to selecting a place where V is to be
zero.



Solving for the potential
So far, we have obtained two important laws regarding the electric field

~r. ~E =
⇢

✏0
, ~r⇥ ~E = 0

r2V = � ⇢

✏0

~E = �~rV

Poisson’s equation

In source free region
(no charge) :⇢ = 0

r2V = 0 Laplace’s equation

~r⇥ ~E = ~r⇥ (�~rV ) = 0

No condition on V since
curl of gradient is always
zero. ~r⇥ ~E = 0 permits
~E = �~rV .

We require only one di↵erential equation (Poisson’s equation) to determine V ,
because V is a scalar.



Potential for a localised charge distribution
Point charge: The electric field is ~E = (1/4⇡✏0)(q/r2)r̂ and d~̀= drr̂+rd✓✓̂+
r sin ✓d��̂ so that
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Setting the reference point O at infinity, the potential of a point charge q at
origin is
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Note : 1. Arbitrariness in choosing the reference point helped here. Choosing
infinity as reference point killed the lower limit on the integral.
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In general the potential for a point charge q is
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Collection of point charges V (r) =
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Potential for a localised charge distribution
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Example: Potential due to a line charge  �
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Gaussian cylinder

Field can be evaluated by enclosing the line charge with a Gaussian cylinder of
length ` and radius s.

The field only depends on distance from the line charge
and directed away from it. Contribution to the flux
from the top and bottom caps of the cylinder are zero.

~E =
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2⇡✏0s
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~E.d~a = |E|2⇡s` = �`
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~E = �~rV =) V = � �

2⇡✏0
ln s+Constant

Warning: Unlike the case of point charge, the reference point can not be taken
at infinity! Why?

fixed by reference point

logarithm gets undefined! Choose the reference point at r = 1 where the poten-
tial becomes zero.

s
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ln s with respect to reference point at r = 1s





Example: Screened Coulomb potential
Consider the so-called “screened Coulomb potential” of a point charge q that
arises, for example, in plasma physics

V (r) =
q
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Determine the charge distribution ⇢(r) that produces this potential.

� is a constant called screening length.
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The charge distribution that gives rise to this electric field can be obtained by
calculating ~r. ~E
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Using the identity ~r.(f ~A) = f(~r. ~A) + ~A.(~rf) and ~r.(r̂/r2) = 4⇡�3(r)using



Example: Screened Coulomb potential

~r. ~E =
q
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Using the identity ~r.(f ~A) = f(~r. ~A) + ~A.(~rf) and ~r.(r̂/r2) = 4⇡�3(r)using

There is a point charge at the origin in addition to an exponentially decaying
charge density
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Summary

Fundamental quantities in electrostatics : ⇢, ~E, V.

Began with (i) superposition principle and (ii) Coulomb’s law. All else followed
from these.
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