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Example: Potential due to uniformly charged sphere
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q: total charge distributed over sphere

Both E & V are  
continuous at the surface



Potential due to uniformly charged spherical shell

V (r) = 1
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Use Gauss’s law to find E and then potential V

Eout ⋅ 4πz2 =
σ × 4πR2
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Reference point has been chosen at z=infinity

Ein ⋅ 4πz2 = 0 as Qencl = 0
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Vin = Constant(C)

At z=R, Vin = Vout

⇒ Vin = C =
σR
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E is discontinuous at the surface; V is continuous



The dipole moment is a vector of magnitude equal to the product of the mag-
nitude of either charge and the distance between them. Conventionally the
direction of the dipole moment vector is defined along the direction from nega-
tive to positive charge.

An electric dipole consists of two equal and opposite charges (±q) separated by
a distance s.
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Example: Potential and electric field of a dipole
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From the geometry: (using law of cosines)
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Example: Potential and electric field of a dipole

Now ~E = �~rV , but we need ~r
in spherical polar coordinate
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Assumes spherical polar and
direction of ~p along z

Dipole field falls o↵ as inverse cube of r



How to “see” the potential?
The easiest way to represent the potential is to draw surfaces on which V is a constant. We call 
them equipotential surfaces—surfaces of equal potential (recall level surfaces/curves from L1)

Potential due to 2  identical point charges
 at (1,0,0) and (-1,0,0)

Equipotentials
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Q. What is the geometrical relationship of the equipotential surfaces to the field lines?

Remember:                    . The gradient is in the direction of the most rapid change of the potential, 
and hence is perpendicular to an equipotential surface. If E were not perpendicular to the surface, it 
would have a component in the surface. The potential would be changing in the surface, but then it 
wouldn’t be an equipotential. The equipotential surfaces must then be everywhere at right angles to 

the electric field lines.

E = �~rV
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Electrostatic Boundary Conditions
We have noticed that whenever there is a surface charge, the electric field is
discontinuous across the surface but the potential is continuous.
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Electrostatic Boundary Conditions
The boundary conditions on ~E can be combined to a single formula
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Energy of a point charge in Electric Field

Q
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Let us have electric field ~E and potential V
due to a stationary configuration of source charges

The electrostatic force field ~F on a test charge
Q is conservative since

~r⇥ ~F = Q~r⇥ ~E = 0

Question: How much work needs to be done in taking Q from a to b?

Work done by ~F W =

Z b
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V (b)� V (a) =
W
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Potential di↵erence between a and b is the work per unit charge required to
carry a particle from a to b

W = Q[V (r)� V (1)]

independent of path,
depends on end points

potential energy per unit charge : potential

! W = QV (r) if reference at 1

at any point along the path, the 
force on Q is F=QE. The force

you need to exert in opposition 
to this electrical force is -QE.



Energy of a point charge distribution
Question: How much work is needed to assemble an entire collection of point

charges?

No work to bring in the first charge q1 at ~r1
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Intentionally counting twice and dividing by 2. 
However, we must avoid i=j though. 



Energy of a point charge distribution
You can also write the energy as: W =

1
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where V (~ri) is the scalar potential experienced by the i-th point charge
due to other point charges.

W represents the amount of work needed to assemble a configuration of
point charges.

! it also is the amount of work we get back by dismantling the system

Remember: The factor of 1/2 was introduced because in the double summation, we have 
counted all pairs of point charges twice.  



Energy of a continuous charge distribution

Charge distribution with volume charge density ⇢

Each volume element d⌧ contains charge ⇢d⌧ .

Generalising the previous case: W =
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The energy of the charge ⇢d⌧ is the product of this charge and the potential at
the same point. The total energy therefore is the integral over V ⇢d⌧

But there is still the factor 1
2 !



Energy of a continuous charge distribution

The
1
2 is still required because we are counting energies twice. The mutual

energies of two charges is the charge of one times the potential at it due to the

other. Or, it can be taken as the second charge times the potential at it from

the first. Thus for two point charges we could write:
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The integral in the previous slide corresponds to the sum of both terms in the
brackets of the above equation. That is why we need the factor 1

2 .



Recall that ⇢ = ✏0~r. ~E and ~E = �~rV . Therefore ⇢ = �✏0r2V . So that we can
write
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Energy of a continuous charge distribution

Hence W =
✏0
2

✓Z

vol
(~rV ).(~rV )d⌧ �

Z

surf
(V ~rV ).n̂da

◆
.

Why?

Take a spherical surface
of enormous radius R with
centre at the origin

Far away from charges,
V varies as 1/R and
~rV as 1/R2, but surface
area increases as R2Surface integral falls o↵ as

(1/R)(1/R2)R2 ⇠ (1/R) as
R increases

Including all space (R ! 1)
means the surface integral ! 0

Evaluate surface integral
in the case when surface
goes to infinity.

How?
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So that volume integral
becomes integral over all space


