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Can also be written as : 

Energy of a point charge distribution : W =
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Energy of a continuous charge distribution : =
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Recall that ⇢ = ✏0~r. ~E and ~E = �~rV . Therefore ⇢ = �✏0r2V . So that we can
write
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Brief recap



Example: Energy of a uniformly charged solid sphere
Solid sphere of radius R and charge q

Imagine that we assemble the sphere by building up a succession of thin spherical
layers of infinitesimal thickness. At each stage we gather a small amount of
charge and put it in a thin layer from r to r + dr

Continue the process until we arrive at the final radius R

Suppose qr is the charge of the sphere when
it has been built upto radius r

Work done in bringing a charge dq to it is dW = dqV = dq
1
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If ⇢ is the charge density then

) Energy is proportional to total charge and inversely proportional to radius
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Example: Energy of a uniformly charged solid sphere
Alternate method 1:By using W =
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and check what happens if you evaluate the surface integral at infinity
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We have seen that



Where is the energy located?
Who cares?

If there is a pair of interacting charges, the combination has certain energy.

Do we need to say the energy is located at one of the charges or the other, or
at both, or in between?

In case of electrostatics, it is really hard to answer. Is it stored in the field as
W = ✏0

2

R
E2d⌧ may suggest or is it stored in the charges as W = 1

2

R
⇢V d⌧

implies?

It is best to think that the energy is located in space where the electric field

is. Define energy density w = ✏0|~E|2
2 such that a small volume d⌧ will contain

electrostatic energy w d⌧
~E

d⌧

(Accelerated charges radiate. Also, when light travels, they carry energy but
there is no charge ! Energy is in the field.)

Each volume element d⌧ = dxdydz in an electric
field contains the energy (✏0/2)| ~E|2d⌧



Self energy : Point charge
Electric field of point charge placed at origin : ~E(~r) =
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There is an infinite amount of energy in the field of a point charge!!

The idea of locating the energy in the field is inconsistent with the existence of

point charges. One way out is to say that elementary charges, like the electron,

are not point charges but are really small distribution of charges.

Alternatively, there is something wrong in our theory of electricity at very small
distances. These di�culties have never been overcome, they exist to this day.

! Diverges as r ! 1



Interaction energy of 2 point charges: Superposition principle
Take two charges q1, q2 at ~r1, ~r2 respectively.

Electric field at any point ~r: ~E(~r) = ~E1(~r) + ~E2(~r)

Where ~E1 and ~E2 are due to q1 and q2 respectively.

Electrostatic energy : Wtot =
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The electrostatic energy of a compound system is not the sum of the energies
of its parts considered separately!

Interaction energy : Wint = ✏0
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Note: the result is expected but the integral is not easy to perform. Try to do it!!

Take two charges q1, q2 at ~r1, ~r2 respectively.

Electric field at any point ~r: ~E(~r) = ~E1(~r) + ~E2(~r)

Where ~E1 and ~E2 are due to q1 and q2 respectively.

Take two charges q1, q2 at ~r1, ~r2 respectively.

Electric field at any point ~r: ~E(~r) = ~E1(~r) + ~E2(~r)

Where ~E1 and ~E2 are due to q1 and q2 respectively.

Because electrostatic energy is quadratic in the field, to does not obey the
superposition principle!

it



Conductors
• Electrical  conductor  is  a  solid  that  contains  many  free  electrons.  Electrons  can  move 

around freely in a metal but they can not leave the surface. A “perfect conductor” is defined 
as a material with infinite supply of free charges. 
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~E1

~E0

• Any electric  field  will  set  large  number  of  free  electrons  into  motion 
creating current. But in electrostatics, we will not consider such situation. 

• An external field       will separate the positive and negative charges inside 
the metal and they pile up on two opposite sides. These induced charges 
produce a field of their own       , which is in opposite direction to 

~E0

~E0~E1

• Field of the induced charges tends to cancel the original field. Charges 
will  continue  to  flow until  the  resultant  field  inside  the  conductor  is 
precisely zero. The whole process is practically instantaneous. The only 
electrostatic situation is that the field is zero everywhere inside. 

•                                                     Follows from Gauss’s law                         ⇢ = 0 inside a conductor: ~r. ~E = ⇢/✏0

A conductor is an equipotential and its surface is an equipotential surface, since
electric field is zero everywhere, gradient of V should also be zero implying V
is constant.

.



Conductor
E1=0

Conductors
Any net charge resides on the surface..
Though there can be charges on the surface, the electric field remains perpen-
dicular to the surface. Because, if ~E had a tangential component then charges
on the surface would flow destroying the equilibrium.

.

To find ~E outside a conductor, chose a Gaussian
surface half inside the conductor and half outside.
if A is the area enclosed by the cylinder on the
surface, then the flux is EA = �A/✏0 =) E = �/✏0

.

Note: only contribution to flux is from the top face as
the field inside is zero.

.

There can not be any field inside a cavity within a
conductor, nor any charges on the inside surface.

�! Principle of ’shielding’ electrical equipments
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Conductors
Induced charges: -
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+qA charge +q near an uncharged conductor will attract
each other.

Suppose a charge +q is placed inside the cavity within a conductor.

Will the world outside know about it?

Since no field can enter the conductor, how can it tell the outside world about
its presence?

+q-
-

-
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+
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+ +
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A Gaussian surface outside the conductor will yield
a surface integral corresponding to an enclosed charge q

For the Gaussian surface inside the conductorH
~E.d~a = 0 =) Qenc = 0.

But Qenc = q + qinduced =) qinduced = �q

Negative charges (�q) are induced on the inner surface
and positive charges (+q) go to the outer surface



Conductor

An uncharged spherical conductor centred at the origin has a cavity of some weird shape caved out of it. 
Somewhere within the cavity lies a charge q. What is the field outside the sphere? 

Example

+q
-q

The answer does not depend on the shape of the cavity and the 
location of the charge.

+q

Cavity

P
~r

~E =
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The conductor conceals from us all the info concerning the 
nature of the cavity, revealing only total charge it contains.

The charge +q induces an opposite charge -q on the wall of the cavity, which distributes in such a way 
that its field cancels that of +q, for all points exterior to cavity. 

Since the conductor carries no net charge, this leaves +q to distribute itself uniformly over the surface of 
the sphere.



Surface charge and force on a conductor
In the presence of an electric field, a surface charge will experience a force, the force per unit area is :  

~f = � ~E

But, recall, the electric field is discontinuous at a surface charge ~Eabove � ~Ebelow =
�

✏0
n̂

Question: In order to calculate the force, what should we take as the electric field? Eabove, Ebelow or 
something in between?

We should take the average of the two: ~f = � ~Eaverage =
1

2
�( ~Eabove + ~Ebelow).

WHY?



Surface charge and force on a conductor

n̂

patch

The question is what should we take as the electric field here?

Focus attention on a tiny white patch on the surface 
surrounding the point where we want the electric field. 

Make the patch small enough such that it is essentially 
flat and surface charge is uniform.

~E = ~Epatch + ~EotherHence the total field is: 

Other region of the surface as well 
as extra sources that may be present!

Patch can not exert a force on itself. 
Force on the patch is due exclusively to ~Eother

But note that there is no discontinuity for ~Eother

The discontinuity we are talking about is due entirely to the charge on the patch, which puts out a 
field              on either side. Thus:�/2✏0

~Eabove = ~Eother +
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Averaging is just a device to remove the contribution of the surface charge from the patch itself.
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Surface charge and force on a conductor
The field inside a conductor is zero, boundary condition requires that the field immediately outside is 
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and in terms of potential, 

Therefore the average field is ~Eaverage =
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This amounts to an outward electrostatic pressure P =
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Therefore the force per unit area ~f = ~Eaverage =
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P is force per unit area; 
Replace    in terms of      from first equationσ ⃗E



A capacitor is a device which stores electric charge.

Capacitors vary in shape and size

basic configuration: two conductors carrying equal but 
opposite charges 

C =
Q

�V

What determines how much charge is on the plates of a capacitor for a given voltage?

The proportionality constant C depends on the shape and separation of the conductors.

Experiments show that the quantity of charge Q on a capacitor is linearly proportional
to the potential difference between the conductors; that is, Q / �V

Unit: 1 Farad = 1 F=1C/V

Capacitance: Definitions and all that…

ΔV = V+ − V− = − ∫
+

−

⃗E . d ⃗l
Remember: Q is the charge of positive conductor

Capacitance:



Capacitors
Let’s now solve for the electric field in some conductor problems. The simplest examples are capacitors. 
These are a pair of conductors, one carrying surface charge density    , the other        . � ��
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Gaussian surfaces

The field is �
✏0

between the plates and points to the right; elsewhere it is zero.
Conclusion:

Assumptions:
Flat, parallel surfaces;

distance d between plates is
much smaller than       where

A is the area of the plates

p
A

� = Q/A

We define capacitance as C = Q
V , where V is the voltage or potential di↵erence

between plates.
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Since E = �dV/dz is constant, we have V = �Ez + const. =) V = V (0) �
V (d) = Ed = Q
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=) C = A✏0
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A solid cylindrical conductor of radius a and charge Q is coaxial with a 
cylindrical shell of negligible thickness, radius b>a, and charge -Q. Find the 
capacitance of this cylindrical capacitor if its length is L.

Due to the cylindrical symmetry of the system, we 
choose our Gaussian surface to be a coaxial cylinder 
with length  l< L and radius r where a<r<b.
I

S

~E.d~a = EA = E2⇡rl =
�l

✏0
=) E =
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2⇡✏0r

Notice that the electric field is non-vanishing only in the region a<r<b . For r < a , the 
enclosed charge is zero since any net charge in a conductor must reside on its surface. 
Similarly, the enclosed charge is zero for  r > b, since the Gaussian surface encloses 
equal but opposite charges from both conductors. 
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Capacitance crucially depends on the geometric factors L,a and b



Work done to charge a capacitor :

q= charge of the positive plate 
Potential difference = q/C 

To charge by a small amount     one has to work = q
C

dqdq

Total work necessary to charge by amount Q is
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Where Q = CV


