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Here we havetosolve the Laplace's equation Ttv 0

as there is no charges in the regions of interest under some

specific boundary conditions Bo

a
Express Laplace's equi in spherical polar coordinates

Note Due to the symmetry V will be independent of
0 and Qi and is function of r only

The rt Idr r2dd o

or r2 C constant

or du c drip2
another constant

These constants will be fixed by BC

For region between the shells we have two boundaries
V Va at r na

and v Vb at r rb
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Solving these two C Taaffe nano

and K Vara Vbt
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For the region r rb we have two boundaries
v o at r a

V Vb at r tb
First BC k o

n Va Cg
2nd Bc Vb f C Vbrb
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b Express the Laplace's equi in Cylindrical coordinates

Due to symmetry V will be independent of 4 Z
Then TZ V f ddg s

s ddi C constant

or c def a dv

To make dimensionless introduce a length scale say l
Then c ds a du
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on V C Inn µ
another

constant
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Be Sera Va
and V Serb Vb

Va C ln 1k and Vb clinch 1k

Solving these C Va
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This length scale l can be associated with the arbitrarymess

of potential U i e V is defined upto some additive
constant
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Note V o at r R

b Induced surface charge density is given by
a to n

r p
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From the above expression for V We find
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Induced surface charge
density

Total induced charge
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since we are interested on the surface of the sphere here
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Note Here 9induced is 9
9 can be considered as a image charge due

to q

Energy of this configuration is determined bya

w J E di
t

work done to bring q charge frominfinity to a

Here F is the force exerted on charge 9 by the charge
induced on the sphere
Since induced charge is equivalent to the image charge

9 the force is given by the face between charges
9 and q With q placed at 2 I the force is
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This situation can be handled in the followingway
Suppose initially the sphere is at ter potential

Then by the previous problem the image charge
due to q is q ER at b Iad as shown infigurea

Now to incorporate the real fact that the sphere is at
potential Vo we can put a 9 charge at 0 Center

of the sphere i s t qVo TER
This is fine since the chargeqat centeromakes the surface
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Now We havethetotal induced charge as 9 t q on the surface
of the sphere



thetotalforce on q is calculated by evaluating the force due to 9
and q as well as q
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First of all let us calculate the field due to a uniformly charged
infinite line of chargeof lineardensity x Gaussian

surface
Using Gauss's law
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Now we calculate the potential at any distance s In this

case we can not set the reference point at as the chargeitse

extends to D Let us then set the referencepoint at s e say
S
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Now in the given problem let us replace the copperpipes oriented

parallel to the z axis as shown by infinite lines of imagecharge
with linear densities IX respectively at Y ta
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Then the total potential at any point Playa is
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The above equation yields the equations of the family of
equipotential surfaces givenby
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since the surfaces of the conducting wires are equipotential them
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which represents an equation of circle on the Y Z plane

Now the general equation of a circle with center yo
and radius R on the Y E plane is
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Comparing we conclude that the family of equipotenti
are circles as shown below and in particular the axis of
the right copper wire is located at

yo a kutty d as given in the problem

similar will be also for left conductor
In this case Up Vo

yo al'Ia af d

as given in
the problem
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The required expression for potential is
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Since the rectangular pipe is running from 2 D toz t

the potential inside the pipe is independent of 2 i
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a Use separation of variables technique
v ca Y X a Y y

Ix daff e dd k2 const
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Absorbing c in A and B

Now Bc Iii sin ka O
k a htt with n I 2,3

Here n can not be Zero otherwise V trivially
vanishes Negavitive integer values of n do not give

independent solutions
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i Theeigen solutions are factorof 2 is absorbed in A
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Multiply both sides by sin MII and then integrating

over y for Y o to Y a we obtain a
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Induced charge density is determined by
EoFn

surface

Here the surface is ya a
in J As we are lookingfrom the

inside of the conductor
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