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Syllabus

I Pre Mid-Term Lectures (Myself & Bibhas Majhi)

1. Vector Calculus: Gradient, Divergence and Curl; Line, Surface and Volume
integrals; Gauss's divergence theorem and Stokes' curl theorem in Cartesian,
Spherical polar, and Cylindrical polar coordinates; Dirac Delta function.

2. Electrostatics: Gauss's law and its applications; Divergence and Curl of
Electrostatic �elds, Electrostatic Potential; Boundary Conditions; Work and
Energy; Conductors and Capacitors; Laplace's equation: Solution by Method of
Images & Variable Separable Method of solving PDE for Boundary Valued
Problems involving Cartesian Coordinate Systems ONLY; Dielectric Media:
Polarization, Bound Charges, Electric Displacement; Boundary conditions in
dielectrics; Energy and Forces in dielectrics.

I Post Mid-Term Lectures (Sovan Chakraborty & Debasish Bora)

1. Magnetostatics: Lorentz force. BiotSavart and Ampere's laws and their
applications. Divergence and Curl of Magnetostatic �elds, Magnetic Vector
Potential. Force and torque on a magnetic dipole. Magnetic materials.
Magnetization, Bound currents. Boundary conditions.

2. Electrodynamics: Ohm's law. Motional EMF, Faraday's law. Lenz's law.

Self and Mutual inductance. Energy stored in magnetic �eld. Maxwell's

equations. Continuity Equation, Poynting Theorem, Wave solution of Maxwell's

Equations.

3. Electromagnetic Waves: Polarization, re�ection and transmission at
oblique incidences
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Reading Material

I Textbook:
1. D. J. Gri�ths, Introduction to Electrodynamics, 4th Ed. Prentice-Hall

(1995).

I References:
1. N. Ida, Engineering Electrodynamics, Springer (2005).
2. M. N. O. Sadiku, Elements of Electromagnetics, Oxford (2006)
3. Feynman, Leighton, and Sands, The Feynman Lectures on Physics,

Vol. II, Norosa Publishing House (1998).
4. I. S. Grant and W. R. Phillips, Electromagnetism, John Wiley, (1990).

I Web page for Lecture Slides & Tutorials.

I Note: Slides will be available online only after the lecture class.

I For further queries you may consult me at my
O�ce: Physics Dept. 3rd Floor Room No. 6.

I For appointment �rst email me at udit.raha@iitg.ac.in
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PH 102 Lecture Classes (in L2) & Tutorials Time-Table

I Tuesday Tutorial:
7:55 AM - 8:55 AM (in respective Tutorial Groups)

I Wednesday Lecture:
11:00 AM - 11:55 AM (Div III) & 4:00 PM - 4:55 PM (Div I)

I Thursday Lecture:
11:00 AM - 11:55 AM (Div III) & 4:00 PM - 4:55 PM (Div I)



Assessments

I All examinations will be primarily subjective type with both long and short
answer type question

Examinations Dates Marks

Quiz-I February, 4 10

Mid-Semester March, 2 30

Quiz-II To be announced 10

End-Semester May, 6 50

REQUEST: Please regularly attend ALL Lectures and Tutorial classes�� ��Note: 75% attendence is the minimum passing criterion for this course



Preliminary Vector (Analysis) Calculus

1. Scalar and Vectors Fields: De�nitions and Examples.

2. Di�erential Calculus of Fields: Ordinary, Partial and Total Derivatives.

3. Di�erential Operators: Gradient, Divergence, Curl (Rotation/Rot) and Laplacian.

4. Integrals in Vector Analysis: Line Integrals, Surface (Flux) Integrals, and Volume
Integrals.

5. Fundamental Theorems: Gradient Theorem, Gauss's Divergence Theorem and
Stokes' Curl Theorem

6. Orthogonal Coordinate Systems: Cartesian, Spherical polar, and Cylindrical polar
coordinates.

7. The Dirac-Delta function: De�nitions and Applications.

SO LET'S GET STARTED ...



Concept of Fields

While describing extended objects in physics that �ll up some space or regions
of space, we need to de�ne abstract �objects� called FIELDS. With each point
of the space, if we associate scalar properties we need SCALAR FIELDS, or if
we associate vector properties we need VECTOR FIELDS.

De�nition
If we consider a function f de�ned over a multi-D domain, i.e., with m ≥ 1

f : Rm → Rn,

then for n = 1, the set of functional values of f at all points P in the space,
i.e., S = {f (P)| f : Rm → R, ∀P ∈ Rm} de�nes a scalar �eld over Rm,
otherwise for n > 1, S de�nes a vector �eld over Rm.

Examples

I Temperature T, Pressure P and Density ρ functions of a �uid (scalar �elds)

I Potential functions φ, e.g., Gravitational, Electrostatic, etc. (scalar �elds)

I Position vector r of a particle (vector �eld)

I Velocity vector v of a rotating body, or of a streamline �uid �ow (vector �eld)

I Forces �elds F, e.g., Gravitational, Electrostatic, etc. (vector �elds)



Scalar Field (2D)

x

y

z

Example

A scalar �eld over R2 given by the set S and de�ned by the function f (x , y):

S =
{
f (x , y)| f = x2 + y2, ∀(x , y) ∈ R2

}



2D Scalar Field in Physics

Example

The Electrostatic Potential function V (x , y) for two identical point charges Q
at (1, 0, 0) and (−1, 0, 0) in xy -plane (z = 0) de�nes a scalar �eld in R2

V (x , y) =
Q

4πε0

 1√
(x − 1)2 + y2

+
1√

(x + 1)2 + y2



Countour plot displays the family of EQUIPOTENTIALS
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Scalar Field (3D)

Example

L→ Family of Coaxial level surfaces in R3 de�ned by f (X ,Y ,Z) = const.

S =
{
f (x , y , z)| f = x2 + y2 − z2, (x , y , z) ∈ R3

}
L =

{
f (X ,Y ,Z) = X 2 + Y 2 − Z 2 = const.| (X ,Y ,Z) ⊂ R3

}



Vector Fields (2D)

Example

Vector �elds de�ned in terms of vector-valued functions V ∈ R2

S1 =
{
V1(x , y) = x î+ y ĵ, (x , y) ∈ R2

}

-2 -1 1 2
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S2 =
{
V2(x , y) = −y î+ x ĵ, (x , y) ∈ R2

}
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2D Vector Field in Physics

Example

The vector function E(x , y) represents the Electric Field due to opposite point
charges Q and −Q at (1, 0, 0) and (−1, 0, 0), respectively, in xy-plane (z = 0)

E(x , y)|z=0 =
Q

4πε0

(
(x − 1) î+ y ĵ(

(x − 1)2 + y2
)3/2 − (x + 1) î+ y ĵ(

(x + 1)2 + y2
)3/2

)



Physical Vector Fields (3D)

Pressure gradient �eld and Velocity �eld

for streamline liquid �ow

Flux across a surface/membrane

Example

Vector �elds in R3 are de�ned in terms of vector-valued functions in R3



Single Variable Calculus: Ordinary Derivatives

De�nition
Suppose V : R→ R3 be a vector valued function of a single variable t ∈ R.
Then, the derivative of V with respect to (w.r.t.) t is given by

V
′(t) =

dV(t)

dt
= lim
δt→0

V(t + δt)− V(t)

δt

if the above limit exits. Equivalently, with components: V1,V2,V3∈ R, each
being independent function of t:

V ′i (t) =
dVi (t)

dt
= lim
δt→0

Vi (t + δt)− Vi (t)

δt
, i = 1, 2, 3.

Since V′(t) is itself a vector, we can consider the second derivative with

respect to t, if it exists, i.e., dV′(t)
dt

, and denoted by the symbol d2V(t)
dt2

.

De�nition
In particular we can de�ne a DIFFERENTIAL of the vector function V:

dV(t) ≡
(
dV(t)

dt

)
dt = V

′(t) dt.

This is called the CHAIN RULE of ordinary derivatives.
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Multivariate Calculus: Partial Derivatives

De�nition
Suppose V be a continuous vector function of several independent variables,
say, u, v , t ∈ R. Then, the PARTIAL derivative of V w.r.t., say t, is given by

Vt(u, v , t) ≡
∂V(u, v , t)

∂t
= lim
δt→0

V(u, v , t + δt)− V(u, v , t)

δt

if the limit exists.

Likewise, the partial derivative w.r.t. v :

Vv (u, v , t) ≡
∂V(u, v , t)

∂v
= lim
δv→0

V(u, v + ∂v , t)− V(u, v , t)

δv

Thus, the partial derivatives signify how rapidly the (vector) function varies

when one of the variables in the argument is changed by a in�nitesimal

amount, when the other variables held �xed. Di�erent notations may be used

for the partial derivative w.r.t. t, e,g., Vt , V
′
t , ∂tV ,

∂V
∂t

,
∂
∂t
V,...

Higher (mixed) partial derivatives:

Vtt =
∂2V

∂t2
, Vvu =

∂2V

∂u ∂v
=

∂2V

∂v ∂u
= Vuv , Vuvt =

∂3V

∂t ∂v ∂u
= Vvtu = Vutv = · · ·
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CHAIN RULE: Total Di�erential & Derivative

De�nition
Suppose V(x , y , z) be a smooth vector valued function of independent variables
x , y , z ∈ R with continuous partial derivatives. Then, the TOTAL
DIFFERENTIAL of V is given by the CHAIN RULE:

dV(x , y , z) =

(
∂V

∂x

)
y,z→const.

dx +

(
∂V

∂y

)
x,z→const.

dy +

(
∂V

∂z

)
x,y→const.

dz

De�nition
TOTAL DERIVATIVE of V which may implicitely or explicitely depends on
another variable, say, t ∈ R, assuming the variables, x , y , z to depend on t:

dV (x(t), y(t), z(t))

dt
=

(
∂V

∂x

)
y,z

dx(t)

dt
+

(
∂V

∂y

)
x,z

dy(t)

dt
+

(
∂V

∂z

)
x,y

dz(t)

dt

≡ Vx
dx(t)

dt
+ Vy

dy(t)

dt
+ Vz

dz(t)

dt
: Implicitely

Explicitely :
dV (x(t), y(t), z(t), t)

dt
= Vx

dx(t)

dt
+ Vy

dy(t)

dt
+ Vz

dz(t)

dt
+ Vt
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Total Spatial Derivatives in R2 & R3 → Directional Derivatives

De�nition
Consider the continuous scalar function φ : R3 → R, de�ning a scalar �eld in
R3. Let r ∈ R3 be a point P and n̂ ∈ R3 be an unit vector in a given direction.
Consider a ray L from P in the direction n̂ and a second point Q on this ray at
a small distance δs from P . Then,

Dn̂φ(r) ≡
dφ(r)

ds
= lim
δs→0

φ(Q)− φ(P)
δs

= lim
δs→0

φ(r + δs n̂)− φ(r)
δs

is called the DIRECTIONAL derivative of φ at P(r) in the direction of n̂.

Thus, dφ
ds

yields the rate of change of φ at point P in the direction of n̂



Directional Derivative

Cartesian system → P(x , y , z) and Q(x + δx , y + δy , z + δz)

~PQ ≡ δr = δs n̂ = δx(s) î+ δy(s) ĵ+ δz(s) k̂

RECALL ⇒ Total di�erential formula with δφ→ dφ for δs → 0:

δφ = φ(Q)− φ(P) = φ(x + δx(s), y + δy(s), z + δz(s))− φ(x , y , z)

=
∂φ

∂x
δx(s) +

∂φ

∂y
δy(s) +

∂φ

∂z
δz(s)

Then the directional derivative of φ(r) is

dφ(x , y , z)

ds
= lim
δs→0

φ(Q)− φ(P)
δs

=
∂φ

∂x

(
dx(s)

ds

)
+
∂φ

∂y

(
dy(s)

ds

)
+
∂φ

∂z

(
dz(s)

ds

)

=

(̂
i
∂φ

∂x
+ ĵ

∂φ

∂y
+ k̂

∂φ

∂z

)
·
(
dr(s)

ds

)

≡ gradφ · n̂

The vector function grad φ is called GRADIENT and de�nes a vector �eld.
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Gradient Operator ∇ (�nabla�)

∇ ≡ grad =

(̂
i
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)

Consider a di�erentiable scalar function φ : R3 → R, with
φ(x , y , z) = k ⇒ constant, k ∈ R. This represents a family of non-intersecting
LEVEL SURFACES in 3D space for di�erent values of the constant k.

Corollary

What is the direction of gradient of φ at a given point P, i.e., ∇φ(P)?
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Geometric Interpretion of ∇
Consider the level surface given by φ(x , y , z) = k containing point P(x , y , z).
For any direction, say, n̂ from P, consider the total di�erential dφ:

dφ(P) =

(
∂φ

∂x

)
P

dx +

(
∂φ

∂y

)
P

dy +

(
∂φ

∂z

)
P

dz : chain rule

= ∇φ(P) · (̂idx + ĵdy + k̂dz) = ∇φ(P) · dr = ∇φ(P) · (ds n̂)
= |∇φ(P)| |n̂| ds cos θ

dφ(P)

ds
= |∇φ(P)| cos θ

where θ is the angle between ∇φ(P) and the direction n̂. Thus,

Dn̂φ(P) ≡
(
dφ

ds

)
P

= |∇φ(P)| cos θ =⇒ [Dn̂φ(P)]max = |∇φ(P)|�
�

�
�

The gradient of a scalar function φ at any given point P yields the maximum
value of its directional derivative at that point, and its direction obviously
points along the normal direction N̂ for the level surface φ(x , y , z) = k, i.e.,

the direction with the steepest rate of change of φ at that point.
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Product Identities (Gradient)

If φ and ψ are di�erentiable scalar �elds, and if A and B are di�erentiable
vector �elds, then φψ and A · B are both scalar �elds. Also if k is a constant
scalar and n is any integer, then the following product identities hold:

I ∇(k φ) = k∇φ
I ∇ (φψ) = φ∇ψ + ψ∇φ
I ∇

(
φ
ψ

)
= ψ∇φ−φ∇ψ

ψ2

I ∇φn = nφn−1∇φ
I ∇ (A · B) = (A · ∇)B+ (B · ∇)A+ A× (∇× B) + B× (∇× A)

Note: The term (A · ∇)B is perfectly de�ned → it yields a vector �eld

(A · ∇)B =

[
(A1̂i+ A2̂j+ A3k̂) ·

(̂
i
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

)]
B

=

(
A1

∂

∂x
+ A2

∂

∂y
+ A3

∂

∂z

)
B

= A1
∂B

∂x
+ A2

∂B

∂y
+ A3

∂B

∂z

= A1
∂

∂x
(B1̂i+ B2̂j+ B3k̂) + A2 · · ·
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Product Identities for Gradient (contd.)

∇ (A · B) = (A · ∇)B+ (B · ∇)A+ A× (∇× B) + B× (∇× A)

Hint: Proof of the last Identity

∇ (A · B) = ∇ (AxBx + AyBy + AzBz)

= (Ax∇Bx + Ay∇By + Az∇Bz) + (Bx∇Ax + By∇Ay + Bz∇Az)

The x-component of the �rst bracket:

+Ax∂xBx +Ay∂xBy +Az∂xBz

+Ay∂yBx −Ay∂yBx

+Az∂zBx −Az∂zBx

(A · ∇)Bx +Ay (∇× B)z −Az (∇× B)y
= (A · ∇)Bx + (A× (∇× B))x
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