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Syllabus

» Pre Mid-Term Lectures (Myself & Bibhas Majhi)

1. Vector Calculus: Gradient, Divergence and Curl; Line, Surface and Volume
integrals; Gauss's divergence theorem and Stokes’ curl theorem in Cartesian,
Spherical polar, and Cylindrical polar coordinates; Dirac Delta function.

2. Electrostatics: Gauss's law and its applications; Divergence and Curl of
Electrostatic fields, Electrostatic Potential; Boundary Conditions; Work and
Energy; Conductors and Capacitors; Laplace’s equation: Solution by Method of
Images & Variable Separable Method of solving PDE for Boundary Valued
Problems involving Cartesian Coordinate Systems ONLY; Dielectric Media:
Polarization, Bound Charges, Electric Displacement; Boundary conditions in
dielectrics; Energy and Forces in dielectrics.
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> Post Mid-Term Lectures (Sovan Chakraborty & Debasish Bora)

1. Magnetostatics: Lorentz force. BiotSavart and Ampere’s laws and their
applications. Divergence and Curl of Magnetostatic fields, Magnetic Vector
Potential. Force and torque on a magnetic dipole. Magnetic materials.
Magnetization, Bound currents. Boundary conditions.

2. Electrodynamics: Ohm'’s law. Motional EMF, Faraday’s law. Lenz's law.
Self and Mutual inductance. Energy stored in magnetic field. Maxwell’s
equations. Continuity Equation, Poynting Theorem, Wave solution of Maxwell's
Equations.

3. Electromagnetic Waves: Polarization, reflection and transmission at
oblique incidences
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» References:
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Vol. 11, Norosa Publishing House (1998).
4. 1. S. Grant and W. R. Phillips, Electromagnetism, John Wiley, (1990).
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PH 102 Lecture Classes (in L2) & Tutorials Time-Table

» Tuesday Tutorial:
7:55 AM - 8:55 AM (in respective Tutorial Groups)

» Wednesday Lecture:
11:00 AM - 11:55 AM (Div Ill) & 4:00 PM - 4:55 PM (Div 1)

» Thursday Lecture:
11:00 AM - 11:55 AM (Div Il1) & 4:00 PM - 4:55 PM (Div 1)



Assessments

» All examinations will be primarily subjective type with both long and short
answer type question

| Examinations | Dates | Marks |
Quiz-I February, 4 10
Mid-Semester March, 2 30
Quiz-1l To be announced 10
End-Semester May, 6 50

REQUEST: Please regularly attend ALL Lectures and Tutorial classes

[Note: 75% attendence is the minimum passing criterion for this course ]




Preliminary Vector (Analysis) Calculus

Scalar and Vectors Fields: Definitions and Examples.
Differential Calculus of Fields: Ordinary, Partial and Total Derivatives.
Differential Operators: Gradient, Divergence, Curl (Rotation/Rot) and Laplacian.

B W

Integrals in Vector Analysis: Line Integrals, Surface (Flux) Integrals, and Volume
Integrals.

5. Fundamental Theorems: Gradient Theorem, Gauss's Divergence Theorem and
Stokes’ Curl Theorem

6. Orthogonal Coordinate Systems: Cartesian, Spherical polar, and Cylindrical polar
coordinates.

7. The Dirac-Delta function: Definitions and Applications.

SO LET'S GET STARTED ... I




Concept of Fields

While describing extended objects in physics that fill up some space or regions
of space, we need to define abstract “objects” called FIELDS. With each point
of the space, if we associate scalar properties we need SCALAR FIELDS, or if
we associate vector properties we need VECTOR FIELDS.

Definition
If we consider a function f defined over a multi-D domain, i.e., with m > 1

f:R" - R",

then for n = 1, the set of functional values of f at all points P in the space,
ie.,, S={f(P)| f:R" —» R, VP € R"} defines a scalar field over R™,
otherwise for n > 1, S defines a vector field over R™.

Examples

» Temperature T, Pressure P and Density p functions of a fluid (scalar fields)
» Potential functions ¢, e.g., Gravitational, Electrostatic, etc. (scalar fields)

> Position vector r of a particle (vector field)

> Velocity vector v of a rotating body, or of a streamline fluid flow (vector field)
> Forces fields F, e.g., Gravitational, Electrostatic, etc. (vector fields)



Scalar Field (2D)

Example

A scalar field over R? given by the set S and defined by the function f(x, y):

S={f(x,)|f =x"+y* VY(x,y) € R?}

[m]

=



2D Scalar Field in Physics

Example
The Electrostatic Potential function V(x,y) for two identical point charges @
at (1,0,0) and (—1,0,0) in xy-plane (z = 0) defines a scalar field in R?

1 1
Q +

O \Jix—12 4y S 12 4y2

V(X7y) = 4

Countour plot displays the family of EQUIPOTENTIALS




2D Scalar Field in Physics

Example

The Electrostatic Potential function V(x,y) for two identical point charges Q
at (1,0,0) and (—1,0,0) in xy-plane (z = 0) defines a scalar field in R?

Q 1 1
V(x,y) = +
dmeo (¢(x—1)2+y2 ¢(x+1>2+y2)

Countour plot displays the family of EQUIPOTENTIALS
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Scalar Field (3D)

Example

L — Family of Coaxial level surfaces in R? defined by (X, Y, Z) = const.

S = {fay2)f=x*+y* =2 (x,y,2) e R’}
L = {f(X,Y,Z)=X>+Y?-Z%=const.| (X,Y,Z) C R*}



Vector Fields (2D)

Example
Vector fields defined in terms of vector-valued functions V € R?
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Vector Fields (2D)

Example

Vector fields defined in terms of vector-valued functions V € R?
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2D Vector Field in Physics

Example

The vector function E(x, y) represents the Electric Field due to opposite point
charges Q and —Q at (1,0,0) and (—1,0,0), respectively, in xy-plane (z = 0)
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Physical Vector Fields (3D)

Pressure gradient field and Velocity field
for streamline liquid flow

Flux across a surface/membrane

Example
Vector fields in R? are defined in terms of vector-valued functions in R3



Single Variable Calculus: Ordinary Derivatives

Definition
Suppose V : R — R? be a vector valued function of a single variable t € R.
Then, the derivative of V with respect to (w.r.t.) t is given by

_dV(t) . V(t+6t) —V(t)

! —
Vi) = dt 5|tI£>nO St

if the above limit exits. Equivalently, with components: Vi, V2, Va€ R, each
being independent function of t:

Aim. 5t , 1=1,2,3.

dvi(t) _
) _

V(e =



Single Variable Calculus: Ordinary Derivatives

Definition
Suppose V : R — R? be a vector valued function of a single variable t € R
Then, the derivative of V with respect to (w.r.t.) t is given by
roydV(E) . V(t+6t) — V(1)
Vi) = at T am 5t

if the above limit exits. Equivalently, with components: Vi, V2, Va€ R, each

being independent function of t:
VI(t) = dvi(t) _ lim Vi(t 4+ dt) — V,-(t)’ =123
dt §t—0 ot
Since V'(t) is itself a vector, we can consider the second derivative with
V(t)

respect to ¢, if it exists, i.e., dvdt(t and denoted by the symbol ddtz




Single Variable Calculus: Ordinary Derivatives

Definition
Suppose V : R — R? be a vector valued function of a single variable t € R.
Then, the derivative of V with respect to (w.r.t.) t is given by

dv(t) . V(t+6t) —V(t)
= lim —————~~
dt 510 ot

if the above limit exits. Equivalently, with components: Vi, V2, Va€ R, each
being independent function of t:

V'(t) =

Vi(e) = Vi) iy VRO Z Vi) g 5 5
dt 5t—0 ot
Since V'(t) is itself a vector, we can consider the second derivative with

respect to ¢, if it exists, i.e., dvdt(t and denoted by the symbol dd\tlzt).

Definition
In particular we can define a DIFFERENTIAL of the vector function V:

dV(t) = (d\ggt)) dt = V'(t) dt.

This is called the CHAIN RULE of ordinary derivatives.




Multivariate Calculus: Partial Derivatives

Definition
Suppose V be a continuous vector function of several independent variables,
say, u,v,t € R. Then, the PARTIAL derivative of V w.r.t., say t, is given by

_ OV(u,v,t) V(u,v, t+6t) —V(u,v,t)
Vile v ) = TG = i, 5

if the limit exists.



Multivariate Calculus: Partial Derivatives

Definition
Suppose V be a continuous vector function of several independent variables,
say, u,v,t € R. Then, the PARTIAL derivative of V w.r.t., say t, is given by
Vo, v, t) = OV(u,v,t) — im V(u,v, t+6t) —V(u,v,t)
ot 510 ot

if the limit exists.

Likewise, the partial derivative w.r.t. v:

oV(u,v,t) lim V(u, v+ 09v, t) —V(u,v,t)

Volu,v,t) = ov Sv—0 1%

Thus, the partial derivatives signify how rapidly the (vector) function varies
when one of the variables in the argument is changed by a infinitesimal
amount, when the other variables held fixed. Different notations may be used
for the partial derivative w.rt. t, e,g., V¢, V}, O,V , %—\t/ , %V,...



Multivariate Calculus: Partial Derivatives

Definition
Suppose V be a continuous vector function of several independent variables,
say, u,v,t € R. Then, the PARTIAL derivative of V w.r.t., say t, is given by
Vo, v, t) = OV(u,v,t) — im V(u,v, t+6t) —V(u,v,t)
ot 510 ot

if the limit exists.
Likewise, the partial derivative w.r.t. v:

oV(u,v,t) lim V(u, v+ 09v, t) —V(u,v,t)

Volu,v,t) = ov Sv—0 1%

Thus, the partial derivatives signify how rapidly the (vector) function varies
when one of the variables in the argument is changed by a infinitesimal
amount, when the other variables held fixed. Different notations may be used
for the partial derivative w.rt. t, e,g., V¢, V}, O,V , %—\t/ , %V,...

Higher (mixed) partial derivatives:
>’V PV PV >’V

Ve=%3z Yw=gray “avan Vv Ve = Gravan

Vvtu = Vutv =



CHAIN RULE: Total Differential & Derivative

Definition

Suppose V(x, y, z) be a smooth vector valued function of independent variables
x,y,z € R with continuous partial derivatives. Then, the TOTAL
DIFFERENTIAL of V is given by the CHAIN RULE:

dV(x,y,z) = N dx + N dy + N dz
19) 0 0
X y,z—>const. -y X,z—rconst. z X,y—rconst.



CHAIN RULE: Total Differential & Derivative

Definition

Suppose V(x, y, z) be a smooth vector valued function of independent variables
x,y,z € R with continuous partial derivatives. Then, the TOTAL
DIFFERENTIAL of V is given by the CHAIN RULE:

dV(x,y,z) = Al dx + v dy + N dz
19) dy oz
X y,z—>const. -y X,z—rconst. z X,y—rconst.

Definition
TOTAL DERIVATIVE of V which may implicitely or explicitely depends on
another variable, say, t € R, assuming the variables, x, y, z to depend on t:

dV(X(t)yjz(t)vz(t)) _ (%‘:) d>;(tt)+(%\;) Lm+<%> d%(tt)

dt
(0) |y, D)y, 2l

Vs dt dt

: Implicitely




CHAIN RULE: Total Differential & Derivative

Definition

Suppose V(x, y, z) be a smooth vector valued function of independent variables
x,y,z € R with continuous partial derivatives. Then, the TOTAL
DIFFERENTIAL of V is given by the CHAIN RULE:

dV(x,y,z) = Al dx + v dy + N dz
19) dy oz
X y,z—>const. -y X,z—rconst. z X,y—rconst.

Definition
TOTAL DERIVATIVE of V which may implicitely or explicitely depends on
another variable, say, t € R, assuming the variables, x, y, z to depend on t:

dV (x(t), ¥(1),2(t))  _ ((lV) dX(t)Jr(@) dy(t)+<3l> dz(t)

dt Ox dt dy dt 0z dt
Vi (1) +Vy dy(t) +V. (t): Implicitely
dt dt
Explicitely :dV (x(1), (1), 2(2). t) = V, dx(t) TV d)/(t) dz(t) v,

dt dt Y odt dt



Total Spatial Derivatives in R? & R3 — Directional Derivatives
Definition
Consider the continuous scalar function ¢ : R* — R, defining a scalar field in
R3. Let r € R® be a point P and i € R® be an unit vector in a given direction.
Consider a ray L from P in the direction fi and a second point @ on this ray at
a small distance ds from P. Then,

do(r) _ . HQ) = G(P) _ . (r+8sh) — o(r)

ds 55—0 os 55—0 ds

Dn ¢(r) =

is called the DIRECTIONAL derivative of ¢ at P(r) in the direction of f.

Thus, % yields the rate of change of ¢ at point P in the direction of A

/



Directional Derivative

Cartesian system — P(x,y,z) and Q(x + éx,y + 8y, z + 6z)

PQ = 6t = s = 6x(s)i+ dy(s)] + dz(s) k
RECALL = Total differential formula with §¢ — d¢ for és — 0:

6¢ = ¢(Q) - ¢(P) = ¢(X+ (5X(S), y+ 5}/(5), z+ 52(5)) - ¢(X7Y7 Z)

7] 0 0
a—f ox(s) + a—f oy(s) + a—f 0z(s)

Then the directional derivative of ¢(r) is

62) _ iy HQ0E) _ 00 (56)) 00 (310)) 00 ((426))

ds 55—0 0s ox Tay ds 0z ds




Directional Derivative

Cartesian system — P(x,y,z) and Q(x + éx,y + 8y, z + 6z)

PQ = 6t = s = 6x(s)i+ dy(s)] + dz(s) k
RECALL = Total differential formula with §¢ — d¢ for és — 0:
0 = #(Q) — ¢(P) = o(x + 5X(5) y +06y(s), z+62(s)) — o(x,y, 2)

= % 5x(s) + 5y( )+ 8¢ dz(s)

Then the directional derivative of ¢(r) is

ey QA8 (801) 2 (o). 2 ()

0p 200 8¢ dr(s)
(W oy ¥ E) ( ds ) =gradosa

The vector function grad ¢ is called GRADIENT and defines a vector field.



Gradient Operator V (“nabla”)

V =grad = (?
X




Gradient Operator V (“nabla”)

Consider a differentiable scalar function ¢ : R® — R, with
¢(x,y,z) = k = constant, k € R. This represents a family of non-intersecting
LEVEL SURFACES in 3D space for different values of the constant k.

Corollary

What is the direction of gradient of ¢ at a given point P, i.e., V¢(P)?

N (normal direction)




Geometric Interpretion of V

Consider the level surface given by &(x,y, z) = k containing point P(x,y, z).
For any direction, say, fi from P, consider the total differential d¢:

de(P) = <%> dx +(a¢))Pd —|—<g¢>sz : chain rule



Geometric Interpretion of V

Consider the level surface given by ¢(x, y, z) = k containing point P(x, y, z).
For any direction, say, fi from P, consider the total differential d¢:

do(P) = (%) dx + (8¢)) dy + <g¢> dz : chain rule
P P
= V¢(P) - (idx +3dy + kdz) = Vé(P) - dr = V§(P) - (ds f)
= |V¢(P)| || ds cos@
qud(SP) = |V¢(P)| cosb

where 0 is the angle between V¢(P) and the direction .
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Geometric Interpretion of V

Consider the level surface given by ¢(x, y, z) = k containing point P(x, y, z).
For any direction, say, fi from P, consider the total differential d¢:

do(P) = <%> dx + ((%)) dy + (?f) dz : chain rule
P P
= V¢(P) - (idx +3dy + kdz) = Vé(P) - dr = V§(P) - (ds f)
= |V¢(P)| || ds cos@
d‘i(sp) = |V¢(P)| cosb

where 6 is the angle between V¢(P) and the direction fi. Thus,

DuiP) = (52) = IV6(P) cost — [Dwb(P). = IVoLP)

The gradient of a scalar function ¢ at any given point P yields the maximum
value of its directional derivative at that point, and its direction obviously
points along the normal direction N for the level surface ¢(x,y, z) = k, i.e.,
the direction with the steepest rate of change of ¢ at that point.




Product Identities (Gradient)

If ¢ and %) are differentiable scalar fields, and if A and B are differentiable
vector fields, then ¢ and A - B are both scalar fields. Also if k is a constant
scalar and n is any integer, then the following product identities hold:

V(k¢)=kVo
V(o) = ¢V + Ve
v

vy V VY

A-B)=(A-V)B+(B-V)A+Ax(VxB)+Bx(VxA)



Product Identities (Gradient)

If ¢ and %) are differentiable scalar fields, and if A and B are differentiable
vector fields, then ¢ and A - B are both scalar fields. Also if k is a constant
scalar and n is any integer, then the following product identities hold:

V(k¢)=kVo
V(p9) = ¢V + Ve
\Y%

¢\ _ ¥vVo—0oVy
7 - 22
/

A-B)=(A-V)B+(B-V)A+Ax(VxB)+Bx(VxA)

vy V VY

Note: The term (A - V)B is perfectly defined — it yields a vector field



Product Identities (Gradient)

If ¢ and %) are differentiable scalar fields, and if A and B are differentiable
vector fields, then ¢ and A - B are both scalar fields. Also if k is a constant
scalar and n is any integer, then the following product identities hold:

V(k¢)=kVo
V(¢y) = ¢V +yVe

V¢" = n¢" 'V
V(A-B)=(A-V)B+(B-V)A+Ax(VxB)+Bx(VxA)

vy V VY

Note: The term (A - V)B is perfectly defined — it yields a vector field

2 2 ’.\6 ’.‘8 ’\8
(AV)B = |:(A1I+A2]+A3R) . <I87 -‘rj@ +k$):| B
0 0 ad
= (Al8 +A2a +A38)B

0B oB oB
A18f +A28f +A36

0
A1a7(51l + sz + B3R) + A



Product Identities for Gradient (contd.)

V(A-B)=(A-V)B+(B-V)A+Ax(VxB)+Bx(VxA)



Product Identities for Gradient (contd.)

V(A-B)=(A-V)B+(B-V)A+Ax(VxB)+Bx(VxA)

Hint: Proof of the last Identity

V(A-B) = V(AB.+AB, +A,B,)
= (A.VB. +AVB, + A.VB.) + (BVA, + B, VA, + B,VA,)

The x-component of the first bracket:

+AOBx  +A0«B, +A;0xB;

+A,0,B, —A,d,B,

+A;0; B, —A;0.Bx
(A-V)Bx +A/(VxB), —A;(VxB)

=(A-V)B.+ (A x(VxB)),
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