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Gradient Operator (V or grad)

Suppose ¢(x, y, z) is a scalar field in R® with continuous partial derivatives, the
GRADIENT of ¢(x,y, z) is given by

_ NIRRT
gradqﬁ(x,y,z) = V(ﬁ(X,y,Z) - (lax +Jay +k82) (ﬁ(X,y,Z)




Gradient Operator (V or grad)

Suppose ¢(x, y, z) is a scalar field in R® with continuous partial derivatives, the
GRADIENT of ¢(x,y, z) is given by

_ NIRRT
gradqﬁ(x,y,z) = V(ﬁ(X,y,Z) - (lax +]8y +k82) (ﬁ(X,y,Z)

ﬁThe gradiant is defined only for scalar fields which yields vector ﬁe/da
» The relation YL is meaningless for a vector field V.

» The magnitude |V ¢| gives the maximum value of the directional
derivative of ¢ at any given point , while the direction of the gradient
points along the fastest rate of change of ¢ at that point.

» V¢ points in the direction normal to the level surface ¢ = const. ie.,
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Example of Gradient in 2D

Examples

1. f(x,y) = xy then %:y and %:xand

\vi =y§+xj
2. f(x.y)=¢€"y then % = ¢e"y and % = ¢e" and

Vf = (y;Jr]) e*
3. f(x,y) =sin (5)42 + 3y) then % = 10x cos (5x2 + 3y} and

g—i = 3cos (5x% +3y) and

V= (IOXi + 3]) cos (5).':2 + 3y)



Example of Gradients in 3D

Find o unit normal vector N of the cone of revolution 2 =dix + yhw the point P (1,0, 2),
Solution. The cong is the level surface f = 0 of fix, v. 20 = 42 + 5 — 2
grad [ = [Bx, By, =2z, gmdfiP)=[8 0. =4]

gadfth) 12 o 1
iy.d;fml._lﬁ‘ c x’s]'

A
N points downward since it hxs o negative z-component. The other unit normal vector of the cone at P is -N
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Divergence Operator (V- or “div")

Let V(x,y, z) is a differentiable vector field in R*with real Cartesian
components Vi, V,, and V,. The DIVERGENCE of V(x, y, z) is obtained by

taking the scalar “dot-product” operation with V:

2D 20 DN\ (e, s, o
V~V(X,y,z)—(la @+ka—>~(|VX+JVX+kVX)

divV(x,y,z) =V - -V(x,y,z) = Ix + Ty 92



Divergence Operator (V- or “div")

Let V(x,y, z) is a differentiable vector field in R*with real Cartesian
components Vi, V,, and V,. The DIVERGENCE of V(x, y, z) is obtained by
taking the scalar “dot-product” operation with V:

2D 20 DN\ (e, s, o
V~V(X,y,z)—<la @Haf)-(.vxﬂvwkvx)

divV(xy.2) =V V(xy2) = 52+ 5+ 5

» Defined for vector fields which yields scalar fields.

» Gives a measure of how much a vector field tends to diverge from or
converge to a given point.

» A SOURCE is a point of +ve divergence and a SINK is a point of -ve
divergence.

» A non-trivial (i.e., V # 0) vector field with zero divergence identically is
said to be SOLENOIDAL (e.m. theory) or INCOMPRESSIBLE (fluid

mechanics).




Divergence: Physical significance
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div W at P Mustration of the divergence of a vector field at P (a) positive
divergence, (b) negative divergence, (¢) zero divergence.



Examples of Divergence

Example

- v
V- :aV-'—‘ ~V+ai
R 4

V=ex+egy

V-V=1+1=2

Positive divergence: source

V-V=-1-1=-2
Negative divergence: sink
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Examples of Divergence

Example
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Curl Operator (Vx or “rot”)

Suppose A(x, y, z) is a differentiable vector field in R® with real Cartesian
components Ay, Ay, A;, the CURL or ROTATION of A(x, y, z) is obtained by
taking the vector “cross-product” operation with V:

N T e a. o
V x A(x, y,2) = (.5 +i3, +k5) X (.AX +iA, +kAZ)

L (0A. DA\ L+ (0A. OA.\ o (DA, 0A.
CurlA(X’%z)_I(@y 8z>+1(82 8X>+k<8x 8y)




Curl Operator (Vx or “rot”)

Suppose A(x, y, z) is a differentiable vector field in R® with real Cartesian
components Ay, Ay, A;, the CURL or ROTATION of A(x, y, z) is obtained by
taking the vector “cross-product” operation with V:

’.\8 ¢5 "a ~ 2 A
V x A(x, y,2) = (.7+,@ +k5) X (lAX—HAy—f—kAZ)

Ox

L (0A. DA\ L+ (0A. OA.\ o (DA, 0A.
CurlA(X’%z)_I(@y 8z>+1(82 8X>+k<(‘9x ay)

» Defined for vector fields which also yields vector fields.

» Unlike the gradient or divergence oparator, the curl oparator is defined
only in 3D, like a vector cross-product.

» [ts magnitude gives the tendency of the vector field to rotate/circulate
about a given point, while its direction lies along the axis of rotation as
determined by the right-hand rule.

» An IRROTATIONAL vector field is one for which the curl vanishes
identically.




Curl: Physical significance

VxA=0 VxA=0

Non-vanishing curl implies the vector field to be rotational about the point P



Product Identities for Gradient, Divergence and Curl (Prove them!)

Let £ be a differentiable scalar field, A and B be differentiable vector fields,
and k = const., then the following product identities hold:

V. (kA)=k(V-A)

V x (kA) = k(V x A)

V. (FA)=f(V-A)+A. VFf

V x (FA) = f(V x A) — A x Vf
V-(AxB)=B-(VxA)—A-(VxB)
Vx(AxB)=(B-V)A+A(V-B)—B(V-A)—(A-V)B
curl of a grad is zero identically: V x (Vf) =0

div of a curl is zero identically: V- (V x A) =0

vVVvVvVvyVvyVvYVYyYVYyyYy

Fact
The last two identities are very important and we shall use them very often.



Laplacian Operator V2 =V -V

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar
function, ¢(x, y, z) defines a differentiable scalar field in R® with continuous
higher order partial derivatives, then a second order scalar operator is obtained
by first taking the “dot-product” of two V's and then operating on ¢(x,y, z),
or equivalently, by taking the gradient first and then evaluating the divergence:



Laplacian Operator V2 =V -V

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar
function, ¢(x, y, z) defines a differentiable scalar field in R® with continuous
higher order partial derivatives, then a second order scalar operator is obtained
by first taking the “dot-product” of two V's and then operating on ¢(x,y, z),
or equivalently, by taking the gradient first and then evaluating the divergence:
o2 o? o?
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Laplacian Operator V2 =V -V

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar
function, ¢(x, y, z) defines a differentiable scalar field in R® with continuous
higher order partial derivatives, then a second order scalar operator is obtained
by first taking the “dot-product” of two V's and then operating on ¢(x,y, z),
or equivalently, by taking the gradient first and then evaluating the divergence:
o2 o? o? Pp o 0%
(V-V)o(x,y,z) = {@ + By2 + @] d(x,y,2) = 2 T a2 + g
20 0 0 20¢p 200  ~0¢
2459 4k 99 399 L {99
(I8X+18y+ ) (Iax +18y+ 0z

V- (Vo(x,y, 2)) e
Po ¢ 0%
a2 T or

= V2¢(x,y,z)

x| Oy?



Laplacian Operator V2 =V -V

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar
function, ¢(x, y, z) defines a differentiable scalar field in R® with continuous
higher order partial derivatives, then a second order scalar operator is obtained
by first taking the “dot-product” of two V's and then operating on ¢(x,y, z),
or equivalently, by taking the gradient first and then evaluating the divergence:

[ P Py 0P 0
(vV)¢(X7y7z)_{ﬁ“!‘aiyz‘i‘@](b(x,y,z)—ﬁ—kaiyz-}—@
= (12 130 k2. (122 4592 k2
Ve Wobna) = (igrig ki) (1024150 +ik02)
2 2 2
@+73¢+73¢EV2¢(X,y’Z)

ox%2  Ody?  0z?
Operation on Vector Fields yields other Vector Fields: Suppose the vector
function, V(x,y,z) =1V, +jV, + kV, defines a differentiable vector field in R3
with continuous higher order partial derivatives, then instead the following
sequence of operation makes sense:



Laplacian Operator V2 =V -V

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar
function, ¢(x, y, z) defines a differentiable scalar field in R® with continuous
higher order partial derivatives, then a second order scalar operator is obtained
by first taking the “dot-product” of two V's and then operating on ¢(x,y, z),
or equivalently, by taking the gradient first and then evaluating the divergence:
o2 o? o? o2 o2 02
(V'V)(ﬁ(X,y,Z) = {ﬁ—"_aiyg +@:| ¢(X7Y7Z) = 67)((5—’— aiy(ﬁ—’— 872(5

20 0 0 20¢p 200  ~0¢
. = T S-SRI SR I St Ak T Vs
Ve (Vo) = (gL g ke ) (15 4352 k5
Po ¢ Po_ o
@‘FT}/Q"‘@ =Vé(x,y,2)
Operation on Vector Fields yields other Vector Fields: Suppose the vector
function, V(x,y, z) = 1Vi 4 jV, 4+ kV, defines a differentiable vector field in R?
with continuous higher order partial derivatives, then instead the following

sequence of operation makes sense:

20 20 0 20 20 0
(V-V)V(x,y,z) = |:<Ia -H@ +k$) . <|8—X —H@ +k$>] V(x,y,z)

vV = & o i =2 Havss (o2
(x,y,2) = 2 o oz V =i(V2V) +1(V?V,) + k(V?V,)



Laplacian Operator V2 =V -V

2 2 2
vv:(a +2 +8)

oxx ' 9y? | 9z2

» Defined for both scalar and vector fields which also yield other scalar an
vector fields, respectively.

» The relation V2V # V -Mis meaningless for a vector field V.
However, a direct operation on its components only make sense, namely,

V2V =(V2V,) +)(V2V,) + k(V2V,)
» A HARMONIC field is one whose Laplacian vanishes identically.




Ordinary Integrals of Vector Functions (in 1D or single variable)

Let A(u) = Ay (u)i + Az(u)j + As(u)k be a vector valued function of a
parameter u € R, where the components A; 23 € R are assumed to be
continuous in 1D domain [a, b] € R. If 3 a vector function S(u) such that

A) = B0




Ordinary Integrals of Vector Functions (in 1D or single variable)

Let A(u) = Ay (u)i + Az(u)j + As(u)k be a vector valued function of a
parameter u € R, where the components A; 23 € R are assumed to be
continuous in 1D domain [a, b] € R. If 3 a vector function S(u) such that

A) = B0

then,

/abA(u) du = /ab (di(UU)) du=S()=5()

is defined as the DEFINITE INTEGRAL of A(u) over the domain [a, b] and
yields a constant vector.

Note: The vector function may be a 3D vector, but the integral is a
one-dimensional or a single variable definite integral.



Line Integrals over Parametric 3D Space Curves
z B(t=b)

The domain of integration can be generalized to an arbitrary 3D path in R3
having a 1D parametric representation

r(t) = g(t)i+ h(t)] + k(t)k

where x = g(t), y = h(t), z = k(t),

are smooth functions of the variable t € [a, b] € R.



Line Integrals over Parametric 3D Space Curves
z B(t=b)

The domain of integration can be generalized to an arbitrary 3D path in R3
having a 1D parametric representation

r(t) = g(t)i+ h(t)] + k(t)k

where x = g(t), y = h(t), z=k(t),
are smooth functions of the variable t € [a, b] € R.
Example

Time parameter t describes point r(t) on the space curve C of a moving
particle in 3D. If f[r(t)] be any smooth scaler function defined on C, then
J flr]ds defines a scaler LINE INTEGRAL of 7(r) over C.



Examples of I-dim Parametrization Space Curves

Examples

Parabolic path in 2D

x(s)=s
y(s) =5

} se[-1,1]




Examples of I-dim Parametrization Space Curves

Examples

Parabolic path in 2D
x(s)

y(s) —s

> }56[71,1]

Helical path in 3D

x(0) = cos 6

y(0) =sind } 0 € [0,107]
z(0)=0/27




Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?



Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?

> Split the given path C into differential segments ds beween the end-points.



Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?

> Split the given path C into differential segments ds beween the end-points.
» Find a smooth (continuous derivatives) 1D parametrization for C :

x =g(t), y = h(t), z= k(t)
r(t) = g(t)i + h(t)] + k(t)k, a<t<b



Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?

> Split the given path C into differential segments ds beween the end-points.

> Find a smooth (continuous derivatives) 1D parametrization for C :
x = g(t), y = h(t), z = k(t)
r(t) = g(t)i+ h(t)j+ k(t)k, a<t<b

> Line Integral over path C is converted to a definite integral over t € [a, b] :

/C F(x,y,z)ds / Flx,y (ds(t)) dt



Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?

> Split the given path C into differential segments ds beween the end-points.

> Find a smooth (continuous derivatives) 1D parametrization for C :
x = g(t), y = h(t), z = k(t)
r(t) = g(t)i+ h(t)j+ k(t)k, a<t<b

> Line Integral over path C is converted to a definite integral over t € [a, b] :
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Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?

> Split the given path C into differential segments ds beween the end-points.

> Find a smooth (continuous derivatives) 1D parametrization for C :

x =g(t), y = h(t), z= k(t)
r(t) = g(t)i + h(t)] + k(t)k, a<t<b

> Line Integral over path C is converted to a definite integral over t € [a, b] :

/Cf(w,z)ds _ /abf(x,y7z)<ds t)) dt — /f[ ’dtT(tt)‘dt
(8 ('




Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f(x,y,z) over a given space curve C : r(t), a<t<b?

> Split the given path C into differential segments ds beween the end-points.

> Find a smooth (continuous derivatives) 1D parametrization for C :

x =g(t), y = h(t), z= k(t)
r(t) = g(t)i + h(t)] + k(t)k, a<t<b

> Line Integral over path C is converted to a definite integral over t € [a, b] :

/Cf(w,z)ds _ /abf(x,y72) (ds t)) dt / Flr(e ’d:!(:)‘ dt
Freny (&) @) ()
[ Fle(t), h(e), k(£)] \/(Zi)z n (;”;)2 + <Z’;)2 dt




Example of Line Integral of Scalar Fields

Example
Find the length of a circular arc AB of radius R for 6 € [0, a].



Example of Line Integral of Scalar Fields

Example
Find the length of a circular arc AB of radius R for 6 € [0, a].

» Plane-polar Parametric form: r(8) = (R cos 0, Rsin 0).
> ¢'(§) = (—Rsinf,Rcos®) and |¥'(9)| = R.



Example of Line Integral of Scalar Fields

Example
Find the length of a circular arc AB of radius R for 6 € [0, a].

» Plane-polar Parametric form: r(8) = (R cos 0, Rsin 0).
> ¢'(§) = (—Rsinf,Rcos®) and |¥'(9)| = R.
» The function we need to integrate here is f[r(6)] = 1.
» Length of arc is given by the line integral:

L= /Cf(r)dl:/C (%) dO:/Oa ¥ (0)] do



Example of Line Integral of Scalar Fields

Example

Find the length of a circular arc AB of radius R for 6 € [0, a].

» Plane-polar Parametric form: r(8) = (R cos 0, Rsin 0).
> ¢'(§) = (—Rsinf,Rcos®) and |¥'(9)| = R.
» The function we need to integrate here is f[r(6)] = 1.

» Length of arc is given by the line integral:

L

/Cf(r)dl:/C (%) dO:/Oa ¥ (0)] do

/ RdO = Ra
0
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