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Gradient Operator (∇ or grad)

Suppose φ(x , y , z) is a scalar �eld in R3 with continuous partial derivatives, the
GRADIENT of φ(x , y , z) is given by

gradφ(x , y , z) ≡ ∇φ(x , y , z) =
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I The gradiant is de�ned only for scalar �elds which yields vector �elds.

I The relation��HH∇V is meaningless for a vector �eld V.

I The magnitude |∇φ| gives the maximum value of the directional
derivative of φ at any given point , while the direction of the gradient
points along the fastest rate of change of φ at that point.

I ∇φ points in the direction normal to the level surface φ = const. ie.,

N̂ = ± ∇φ
|∇φ|
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Example of Gradient in 2D



Example of Gradients in 3D



Divergence Operator (∇· or �div�)
Let V(x , y , z) is a di�erentiable vector �eld in R3with real Cartesian
components Vx ,Vy , and Vz . The DIVERGENCE of V(x , y , z) is obtained by
taking the scalar �dot-product� operation with ∇:
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divV(x , y , z) ≡ ∇ · V(x , y , z) = ∂Vx

∂x
+
∂Vy

∂y
+
∂Vz

∂z

'

&

$

%

I De�ned for vector �elds which yields scalar �elds.

I Gives a measure of how much a vector �eld tends to diverge from or
converge to a given point.

I A SOURCE is a point of +ve divergence and a SINK is a point of -ve
divergence.

I A non-trivial (i.e., V 6= 0) vector �eld with zero divergence identically is
said to be SOLENOIDAL (e.m. theory) or INCOMPRESSIBLE (�uid
mechanics).
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Divergence: Physical signi�cance
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Curl Operator (∇× or �rot�)

Suppose A(x , y , z) is a di�erentiable vector �eld in R3 with real Cartesian
components Ax ,Ay ,Az , the CURL or ROTATION of A(x , y , z) is obtained by
taking the vector �cross-product� operation with ∇:
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(
∂Ax

∂z
− ∂Az

∂x

)
+ k̂

(
∂Ay

∂x
− ∂Ax

∂y

)

'

&

$

%

I De�ned for vector �elds which also yields vector �elds.

I Unlike the gradient or divergence oparator, the curl oparator is de�ned
only in 3D, like a vector cross-product.

I Its magnitude gives the tendency of the vector �eld to rotate/circulate
about a given point, while its direction lies along the axis of rotation as
determined by the right-hand rule.

I An IRROTATIONAL vector �eld is one for which the curl vanishes
identically.
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Curl: Physical signi�cance

Non-vanishing curl implies the vector �eld to be rotational about the point P



Product Identities for Gradient, Divergence and Curl (Prove them!)

Let f be a di�erentiable scalar �eld, A and B be di�erentiable vector �elds,
and k = const., then the following product identities hold:

I ∇ · (kA) = k (∇ · A)
I ∇× (kA) = k (∇× A)

I ∇ · (f A) = f (∇ · A) + A · ∇f
I ∇× (f A) = f (∇× A)− A×∇f
I ∇ · (A× B) = B · (∇× A)− A · (∇× B)

I ∇× (A× B) = (B · ∇)A+ A(∇ · B)− B (∇ · A)− (A · ∇)B
I curl of a grad is zero identically: ∇× (∇f ) = 0

I div of a curl is zero identically: ∇ · (∇× A) = 0

Fact
The last two identities are very important and we shall use them very often.



Laplacian Operator ∇2 ≡ ∇ · ∇
Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar
function, φ(x , y , z) de�nes a di�erentiable scalar �eld in R3 with continuous
higher order partial derivatives, then a second order scalar operator is obtained
by �rst taking the �dot-product� of two ∇'s and then operating on φ(x , y , z),
or equivalently, by taking the gradient �rst and then evaluating the divergence:
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Operation on Vector Fields yields other Vector Fields: Suppose the vector
function, V(x , y , z) = îVx + ĵVy + k̂Vz de�nes a di�erentiable vector �eld in R3

with continuous higher order partial derivatives, then instead the following
sequence of operation makes sense:
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V ≡ î(∇2Vx) + ĵ(∇2Vy ) + k̂(∇2Vz)
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∂

∂y
+ k̂

∂

∂z

)
·
(̂
i
∂φ

∂x
+ ĵ
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function, V(x , y , z) = îVx + ĵVy + k̂Vz de�nes a di�erentiable vector �eld in R3

with continuous higher order partial derivatives, then instead the following
sequence of operation makes sense:

(∇ · ∇)V(x , y , z) =

[(̂
i
∂

∂x
+ ĵ
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Laplacian Operator ∇2 ≡ ∇ · ∇

∇2 ≡ ∇ · ∇ =
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I De�ned for both scalar and vector �elds which also yield other scalar and
vector �elds, respectively.

I The relation ∇2V 6= ∇ ·��
�HHH(∇V) is meaningless for a vector �eld V.

However, a direct operation on its components only make sense, namely,
∇2V ≡ î(∇2Vx) + ĵ(∇2Vy ) + k̂(∇2Vz)

I A HARMONIC �eld is one whose Laplacian vanishes identically.



Ordinary Integrals of Vector Functions (in 1D or single variable)

Let A(u) = A1(u)̂i+ A2(u)̂j+ A3(u)̂k be a vector valued function of a
parameter u ∈ R, where the components A1,2,3 ∈ R are assumed to be
continuous in 1D domain [a, b] ∈ R. If ∃ a vector function S(u) such that

A(u) =
dS(u)

du

then, ˆ b

a

A(u) du =

ˆ b

a

(
dS(u)

du

)
du = S(b)− S(a)

is de�ned as the DEFINITE INTEGRAL of A(u) over the domain [a, b] and
yields a constant vector.

Note: The vector function may be a 3D vector, but the integral is a
one-dimensional or a single variable de�nite integral.
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Line Integrals over Parametric 3D Space Curves

The domain of integration can be generalized to an arbitrary 3D path in R3

having a 1D parametric representation

r(t) = g(t )̂i+ h(t )̂j+ k(t )̂k

where x = g(t), y = h(t), z = k(t),

are smooth functions of the variable t ∈ [a, b] ∈ R.

Example

Time parameter t describes point r(t) on the space curve C of a moving
particle in 3D. If f [r(t)] be any smooth scaler function de�ned on C , then´
C
f [r]ds de�nes a scaler LINE INTEGRAL of f (r) over C .
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Examples of I-dim Parametrization Space Curves

Examples

Parabolic path in 2D

x(s) = s
y(s) = s2

}
s ∈ [−1, 1]

A B

Helical path in 3D

x(θ) = cos θ
y(θ) = sin θ
z(θ) = θ/2π

 θ ∈ [0, 10π]

x

y

z

A

B
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Line Integral of Scalar Fields

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function
f (x , y , z) over a given space curve C : r(t), a ≤ t ≤ b ?

I Split the given path C into di�erential segments ds beween the end-points.

I Find a smooth (continuous derivatives) 1D parametrization for C :

x = g(t), y = h(t), z = k(t)

r(t) = g(t )̂i+ h(t )̂j+ k(t )̂k, a ≤ t ≤ b

I Line Integral over path C is converted to a de�nite integral over t ∈ [a, b] :

ˆ
C

f (x , y , z)ds =

ˆ b

a

f (x , y , z)

(
ds(t)

dt

)
dt =

ˆ b

a

f [r(t)]

∣∣∣∣dr(t)dt

∣∣∣∣ dt
=

ˆ b

a

f (x , y , z)

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

≡
ˆ b

a

f [g(t), h(t), k(t)]

√(
dg

dt

)2

+

(
dh

dt

)2

+

(
dk

dt

)2

dt
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I Find a smooth (continuous derivatives) 1D parametrization for C :

x = g(t), y = h(t), z = k(t)

r(t) = g(t )̂i+ h(t )̂j+ k(t )̂k, a ≤ t ≤ b

I Line Integral over path C is converted to a de�nite integral over t ∈ [a, b] :
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Example of Line Integral of Scalar Fields

Example

Find the length of a circular arc AB of radius R for θ ∈ [0, α].

x

y

z

A

B

dl

I Plane-polar Parametric form: r(θ) = (R cos θ,R sin θ).

I r′(θ) = (−R sin θ,R cos θ) and |r′(θ)| = R.

I The function we need to integrate here is f [r(θ)] = 1.

I Length of arc is given by the line integral:

L =

ˆ
C

f (r) dl =

ˆ
C

(
dl

dθ

)
dθ =

ˆ α

0

|r′(θ)| dθ

=

ˆ α

0

Rdθ = Rα



Example of Line Integral of Scalar Fields

Example

Find the length of a circular arc AB of radius R for θ ∈ [0, α].

x

y

z

A

B

dl

I Plane-polar Parametric form: r(θ) = (R cos θ,R sin θ).

I r′(θ) = (−R sin θ,R cos θ) and |r′(θ)| = R.

I The function we need to integrate here is f [r(θ)] = 1.

I Length of arc is given by the line integral:

L =

ˆ
C

f (r) dl =

ˆ
C

(
dl

dθ

)
dθ =

ˆ α

0

|r′(θ)| dθ

=

ˆ α

0

Rdθ = Rα



Example of Line Integral of Scalar Fields

Example

Find the length of a circular arc AB of radius R for θ ∈ [0, α].

x

y

z

A

B

dl

I Plane-polar Parametric form: r(θ) = (R cos θ,R sin θ).

I r′(θ) = (−R sin θ,R cos θ) and |r′(θ)| = R.

I The function we need to integrate here is f [r(θ)] = 1.

I Length of arc is given by the line integral:

L =

ˆ
C

f (r) dl =

ˆ
C

(
dl

dθ

)
dθ =

ˆ α

0

|r′(θ)| dθ

=

ˆ α

0

Rdθ = Rα



Example of Line Integral of Scalar Fields

Example

Find the length of a circular arc AB of radius R for θ ∈ [0, α].

x

y

z

A

B

dl

I Plane-polar Parametric form: r(θ) = (R cos θ,R sin θ).

I r′(θ) = (−R sin θ,R cos θ) and |r′(θ)| = R.

I The function we need to integrate here is f [r(θ)] = 1.

I Length of arc is given by the line integral:

L =

ˆ
C

f (r) dl =

ˆ
C

(
dl

dθ

)
dθ =

ˆ α

0

|r′(θ)| dθ

=

ˆ α

0

Rdθ = Rα


	Differential Operators
	Gradient
	Divergence
	Curl
	Laplacian

	Integral Calculus of Vector Fields
	Ordinary Integrals
	Line Integrals


