Physics II (PH 102) Electromagnetism (Lecture 2)

Udit Raha

Indian Institute of Technology Guwahati

Jan 2020

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | X 9 Q Q

Gradient Operator ($∇$ or grad)

Suppose $\phi(x,y,z)$ is a scalar field in \mathbb{R}^3 with continuous partial derivatives, the GRADIENT of $\phi(x, y, z)$ is given by

$$
\operatorname{grad} \phi(x, y, z) \equiv \nabla \phi(x, y, z) = \left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z} \right) \phi(x, y, z)
$$

KID KORK KERKER E 1990

Gradient Operator (∇ or grad)

✫

Suppose $\phi(x,y,z)$ is a scalar field in \mathbb{R}^3 with continuous partial derivatives, the GRADIENT of $\phi(x, y, z)$ is given by

grad
$$
\phi(x, y, z) \equiv \nabla \phi(x, y, z) = \left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z}\right) \phi(x, y, z)
$$

The gradiant is defined only for scalar fields which yields vector fields.

- **IF** The relation Π **Y** is meaningless for a vector field **V**.
- The magnitude $|\nabla \phi|$ gives the maximum value of the directional derivative of ϕ at any given point, while the direction of the gradient points along the fastest rate of change of ϕ at that point.

 $\triangleright \nabla \phi$ points in the direction normal to the level surface $\phi = \text{const.}$ ie.,

$$
\hat{\mathbf{N}} = \pm \frac{\nabla \phi}{|\nabla \phi|}
$$

KORKA SERKER STRACK

Example of Gradient in 2D

Examples

1.
$$
f(x, y) = xy
$$
 then $\frac{\partial f}{\partial x} = y$ and $\frac{\partial f}{\partial y} = x$ and

$$
\vec{\nabla} f = y\hat{\mathbf{i}} + x\hat{\mathbf{j}}
$$

2.
$$
f(x, y) = e^x y
$$
 then $\frac{\partial f}{\partial x} = e^x y$ and $\frac{\partial f}{\partial y} = e^x$ and

$$
\vec{\nabla} f = (y\hat{\mathbf{i}} + \hat{\mathbf{j}}) e^x
$$

3.
$$
f(x, y) = \sin (5x^2 + 3y)
$$
 then $\frac{\partial f}{\partial x} = 10x \cos (5x^2 + 3y)$ and
\n $\frac{\partial f}{\partial y} = 3 \cos (5x^2 + 3y)$ and
\n $\vec{\nabla} f = (10x\hat{\mathbf{i}} + 3\hat{\mathbf{j}}) \cos (5x^2 + 3y)$

Example of Gradients in 3D

Find a unit normal vector $\hat{\bf N}$ of the cone of revolution $z^2 = 4(x^2 + y^2)$ at the point P: (1, 0, 2). **Solution.** The cone is the level surface $f = 0$ of $f(x, y, z) = 4(x^2 + y^2) - z^2$.

$$
\text{grad } f = \{8x, 8y, -2z\}, \quad \text{grad } f(P) = \{8, 0, -4\}
$$
\n
$$
\hat{\mathbf{N}} = \frac{\text{grad } f(P)}{|\text{grad } f(P)|} = \left[\frac{2}{\sqrt{5}}, 0, \frac{1}{\sqrt{5}}\right].
$$

 $\hat{\bf N}$ points downward since it has a negative z-component. The other unit normal vector of the cone at P is $-\hat{\bf N}$

Divergence Operator (V· or "div")

Let $\mathsf{V}(x,y,z)$ is a differentiable vector field in \mathbb{R}^3 with real Cartesian components V_x, V_y , and V_z . The DIVERGENCE of $V(x, y, z)$ is obtained by taking the scalar "dot-product" operation with ∇ :

$$
\nabla \cdot \mathbf{V}(x, y, z) = \left(\hat{\mathbf{i}}\frac{\partial}{\partial x} + \hat{\mathbf{j}}\frac{\partial}{\partial y} + \hat{\mathbf{k}}\frac{\partial}{\partial z}\right) \cdot \left(\hat{\mathbf{i}}V_x + \hat{\mathbf{j}}V_x + \hat{\mathbf{k}}V_x\right)
$$

$$
\operatorname{div} \mathbf{V}(x, y, z) \equiv \nabla \cdot \mathbf{V}(x, y, z) = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}
$$

Divergence Operator (∇ · or "div")

Let $\mathsf{V}(x,y,z)$ is a differentiable vector field in \mathbb{R}^3 with real Cartesian components V_x , V_y , and V_z . The DIVERGENCE of $V(x, y, z)$ is obtained by taking the scalar "dot-product" operation with ∇ :

$$
\nabla \cdot \mathbf{V}(x, y, z) = \left(\hat{\mathbf{i}}\frac{\partial}{\partial x} + \hat{\mathbf{j}}\frac{\partial}{\partial y} + \hat{\mathbf{k}}\frac{\partial}{\partial z}\right) \cdot \left(\hat{\mathbf{i}}V_x + \hat{\mathbf{j}}V_x + \hat{\mathbf{k}}V_x\right)
$$

$$
\operatorname{div} \mathbf{V}(x, y, z) \equiv \nabla \cdot \mathbf{V}(x, y, z) = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}
$$

- Defined for vector fields which yields scalar fields.
	- \triangleright Gives a measure of how much a vector field tends to diverge from or converge to a given point.
	- \triangleright A SOURCE is a point of $+ve$ divergence and a SINK is a point of -ve divergence.

✫ A non-trivial (i.e., $V \neq 0$) vector field with zero divergence identically is said to be SOLENOIDAL (e.m. theory) or INCOMPRESSIBLE (fluid mechanics).

Divergence: Physical significance

div **V** at P : Illustration of the divergence of a vector field at P; (a) positive divergence, (b) negative divergence, (c) zero divergence.

 4 ロ) 4 何) 4 ヨ) 4 コ)

 299

Examples of Divergence

Example

$$
\nabla \cdot \vec{\nabla} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}
$$

$$
\vec{\nabla} = \hat{e}_x x + \hat{e}_y y
$$

$$
\nabla \cdot \vec{\nabla} = 1 + 1 = 2
$$

Positive divergence: source

$$
\vec{\nabla} = -\hat{e}_x x - \hat{e}_y y
$$

$$
\nabla \cdot \vec{\nabla} = -1 - 1 = -2
$$

Negative divergence: sink

ミー 2990

Examples of Divergence

Example

$$
\vec{V} = \hat{e}_x y + \hat{e}_y x
$$

$$
\nabla \cdot \vec{V} = 0 + 0 = 0
$$

Divergence Free

イロメ イ押 メイヨメ イヨメ 一番

 $2Q$

Curl Operator ($\nabla \times$ or "rot")

Suppose $\mathbf{A}(x,y,z)$ is a differentiable vector field in \mathbb{R}^3 with real Cartesian components A_x , A_y , A_z , the CURL or ROTATION of $A(x, y, z)$ is obtained by taking the vector "cross-product" operation with ∇ :

$$
\nabla \times \mathbf{A}(x, y, z) = \left(\mathbf{\hat{i}}\frac{\partial}{\partial x} + \mathbf{\hat{j}}\frac{\partial}{\partial y} + \mathbf{\hat{k}}\frac{\partial}{\partial z}\right) \times \left(\mathbf{\hat{i}}A_x + \mathbf{\hat{j}}A_y + \mathbf{\hat{k}}A_z\right)
$$

$$
\operatorname{curl} \mathbf{A}(x, y, z) = \hat{\mathbf{i}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{j}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{k}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
$$

Curl Operator ($\nabla \times$ or "rot")

Suppose $\mathbf{A}(x,y,z)$ is a differentiable vector field in \mathbb{R}^3 with real Cartesian components A_x , A_y , A_z , the CURL or ROTATION of $A(x, y, z)$ is obtained by taking the vector "cross-product" operation with ∇ :

$$
\nabla \times \mathbf{A}(x, y, z) = \left(\mathbf{\hat{i}}\frac{\partial}{\partial x} + \mathbf{\hat{j}}\frac{\partial}{\partial y} + \mathbf{\hat{k}}\frac{\partial}{\partial z}\right) \times \left(\mathbf{\hat{i}}A_x + \mathbf{\hat{j}}A_y + \mathbf{\hat{k}}A_z\right)
$$

$$
\operatorname{curl} \mathbf{A}(x, y, z) = \hat{\mathbf{i}} \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{j}} \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{k}} \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)
$$

Defined for vector fields which also yields vector fields.

- \triangleright Unlike the gradient or divergence oparator, the curl oparator is defined only in 3D, like a vector cross-product.
- Its magnitude gives the tendency of the vector field to rotate/circulate about a given point, while its direction lies along the axis of rotation as determined by the right-hand rule.
- ✫ \triangleright An IRROTATIONAL vector field is one for which the curl vanishes **identically**

Curl: Physical significance

Non-vanishing curl implies the vector field to be rotational about the point P

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q @

Product Identities for Gradient, Divergence and Curl (Prove them!)

Let f be a differentiable scalar field, A and B be differentiable vector fields, and $k = const.$, then the following product identities hold:

►
$$
\nabla \cdot (k\mathbf{A}) = k (\nabla \cdot \mathbf{A})
$$

\n► $\nabla \times (k\mathbf{A}) = k (\nabla \times \mathbf{A})$

\n► $\nabla \cdot (f\mathbf{A}) = f (\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot \nabla f$

\n► $\nabla \times (f\mathbf{A}) = f (\nabla \times \mathbf{A}) - \mathbf{A} \times \nabla f$

\n▶ $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$

\n▶ $\nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A}) - (\mathbf{A} \cdot \nabla)\mathbf{B}$

\n▶ curl of a grad is zero identically: $\nabla \times (\nabla f) = 0$

\n▶ div of a curl is zero identically: $\nabla \cdot (\nabla \times \mathbf{A}) = 0$

Fact

The last two identities are very important and we shall use them very often.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar function, $\phi(\mathsf{x},\mathsf{y},\mathsf{z})$ defines a differentiable scalar field in \mathbb{R}^3 with continuous higher order partial derivatives, then a second order scalar operator is obtained by first taking the "dot-product" of two ∇ 's and then operating on $\phi(x, y, z)$, or equivalently, by taking the gradient first and then evaluating the divergence:

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar function, $\phi(\mathsf{x},\mathsf{y},\mathsf{z})$ defines a differentiable scalar field in \mathbb{R}^3 with continuous higher order partial derivatives, then a second order scalar operator is obtained by first taking the "dot-product" of two ∇ 's and then operating on $\phi(x, y, z)$, or equivalently, by taking the gradient first and then evaluating the divergence:

$$
(\nabla \cdot \nabla) \phi(x, y, z) = \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \phi(x, y, z) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
$$

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar function, $\phi(\mathsf{x},\mathsf{y},\mathsf{z})$ defines a differentiable scalar field in \mathbb{R}^3 with continuous higher order partial derivatives, then a second order scalar operator is obtained by first taking the "dot-product" of two ∇ 's and then operating on $\phi(x, y, z)$, or equivalently, by taking the gradient first and then evaluating the divergence:

$$
(\nabla \cdot \nabla) \phi(x, y, z) = \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \phi(x, y, z) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
$$

$$
\nabla \cdot (\nabla \phi(x, y, z)) = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \cdot \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z} \right)
$$

$$
= \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi(x, y, z)
$$

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar function, $\phi(\mathsf{x},\mathsf{y},\mathsf{z})$ defines a differentiable scalar field in \mathbb{R}^3 with continuous higher order partial derivatives, then a second order scalar operator is obtained by first taking the "dot-product" of two ∇ 's and then operating on $\phi(x, y, z)$, or equivalently, by taking the gradient first and then evaluating the divergence:

$$
(\nabla \cdot \nabla) \phi(x, y, z) = \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \phi(x, y, z) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
$$

$$
\nabla \cdot (\nabla \phi(x, y, z)) = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \cdot \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z} \right)
$$

$$
= \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi(x, y, z)
$$

Operation on Vector Fields yields other Vector Fields: Suppose the vector function, ${\bf V}({\sf x},{\sf y},{\sf z})=\hat{\bf i} V_{\sf x}+\hat{\bf j} V_{\sf y}+\hat{\bf k} V_{\sf z}$ defines a differentiable vector field in ${\mathbb R}^3$ with continuous higher order partial derivatives, then instead the following sequence of operation makes sense:

KORKAR KERKER EL VOLO

Operation on Scalar Fields yields other Scalar Fields: Suppose the scalar function, $\phi(\mathsf{x},\mathsf{y},\mathsf{z})$ defines a differentiable scalar field in \mathbb{R}^3 with continuous higher order partial derivatives, then a second order scalar operator is obtained by first taking the "dot-product" of two ∇ 's and then operating on $\phi(x, y, z)$, or equivalently, by taking the gradient first and then evaluating the divergence:

$$
(\nabla \cdot \nabla) \phi(x, y, z) = \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right] \phi(x, y, z) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2}
$$

$$
\nabla \cdot (\nabla \phi(x, y, z)) = \left(\hat{i} \frac{\partial}{\partial x} + \hat{j} \frac{\partial}{\partial y} + \hat{k} \frac{\partial}{\partial z} \right) \cdot \left(\hat{i} \frac{\partial \phi}{\partial x} + \hat{j} \frac{\partial \phi}{\partial y} + \hat{k} \frac{\partial \phi}{\partial z} \right)
$$

$$
= \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = \nabla^2 \phi(x, y, z)
$$

Operation on Vector Fields yields other Vector Fields: Suppose the vector function, ${\bf V}({\sf x},{\sf y},{\sf z})=\hat{\bf i} V_{\sf x}+\hat{\bf j} V_{\sf y}+\hat{\bf k} V_{\sf z}$ defines a differentiable vector field in ${\mathbb R}^3$ with continuous higher order partial derivatives, then instead the following sequence of operation makes sense:

$$
(\nabla \cdot \nabla) \mathbf{V}(x, y, z) = \begin{bmatrix} \left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z} \right) \cdot \left(\hat{\mathbf{i}} \frac{\partial}{\partial x} + \hat{\mathbf{j}} \frac{\partial}{\partial y} + \hat{\mathbf{k}} \frac{\partial}{\partial z} \right) \end{bmatrix} \mathbf{V}(x, y, z)
$$

$$
\nabla^2 \mathbf{V}(x, y, z) = \begin{bmatrix} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \end{bmatrix} \mathbf{V} \equiv \hat{\mathbf{i}} (\nabla^2 V_x) + \hat{\mathbf{j}} (\nabla^2 V_y) + \hat{\mathbf{k}} (\nabla^2 V_z)
$$

$$
\nabla^2 \equiv \nabla \cdot \nabla = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right)
$$

- ◯ Defined for both scalar and vector fields which also yield other scalar and vector fields, respectively.
	- ► The relation $\nabla^2 \mathbf{V} \neq \nabla \cdot (\nabla \mathbf{V})$ is *meaningless* for a vector field \mathbf{V} . However, a direct operation on its components only make sense, namely, $\nabla^2 \mathbf{V} \equiv \hat{\mathbf{i}}(\nabla^2 V_x) + \hat{\mathbf{i}}(\nabla^2 V_y) + \hat{\mathbf{k}}(\nabla^2 V_z)$

KO > KA > KE > KE > E + ORA

✧ \triangleright A HARMONIC field is one whose Laplacian vanishes identically.

Ordinary Integrals of Vector Functions (in 1D or single variable)

Let $\mathbf{A}(u) = A_1(u)\hat{\mathbf{i}} + A_2(u)\hat{\mathbf{j}} + A_3(u)\hat{\mathbf{k}}$ be a vector valued function of a parameter $u \in \mathbb{R}$, where the components $A_{1,2,3} \in \mathbb{R}$ are assumed to be continuous in 1D domain [a, b] $\in \mathbb{R}$. If \exists a vector function $S(u)$ such that

$$
\mathbf{A}(u) = \frac{d\mathbf{S}(u)}{du}
$$

Ordinary Integrals of Vector Functions (in 1D or single variable)

Let $\mathbf{A}(u) = A_1(u)\hat{\mathbf{i}} + A_2(u)\hat{\mathbf{j}} + A_3(u)\hat{\mathbf{k}}$ be a vector valued function of a parameter $u \in \mathbb{R}$, where the components $A_{1,2,3} \in \mathbb{R}$ are assumed to be continuous in 1D domain [a, b] $\in \mathbb{R}$. If \exists a vector function $S(u)$ such that

$$
\mathbf{A}(u) = \frac{d\mathbf{S}(u)}{du}
$$

then,

$$
\int_a^b \mathbf{A}(u) du = \int_a^b \left(\frac{d\mathbf{S}(u)}{du}\right) du = \mathbf{S}(b) - \mathbf{S}(a)
$$

KORKAR KERKER EL VOLO

is defined as the DEFINITE INTEGRAL of $A(u)$ over the domain [a, b] and yields a constant vector.

Note: The vector function may be a 3D vector, but the integral is a one-dimensional or a single variable definite integral.

Line Integrals over Parametric 3D Space Curves

The *domain of integration* can be generalized to an *arbitrary 3D path* in \mathbb{R}^3 having a 1D parametric representation

 $\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{\hat{j}} + k(t)\hat{\mathbf{k}}$

where
$$
x = g(t), y = h(t), z = k(t),
$$

KORKA BRADE KORA

are smooth functions of the variable $t \in [a, b] \in \mathbb{R}$.

Line Integrals over Parametric 3D Space Curves

The *domain of integration* can be generalized to an *arbitrary 3D path* in \mathbb{R}^3 having a 1D parametric representation

 $\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{\hat{j}} + k(t)\hat{\mathbf{k}}$

where
$$
x = g(t), y = h(t), z = k(t),
$$

are smooth functions of the variable $t \in [a, b] \in \mathbb{R}$.

Example

Time parameter t describes point $r(t)$ on the space curve C of a moving particle in 3D. If $f[r(t)]$ be any smooth scaler function defined on C , then $\int_C f[\mathbf{r}]d\mathbf{s}$ $\int_C f[\mathbf{r}]d\mathbf{s}$ $\int_C f[\mathbf{r}]d\mathbf{s}$ defines a scaler LINE INTEGRAL of $f(\mathbf{r})$ [ove](#page-22-0)r C [.](#page-21-0)

 2990

Examples of I-dim Parametrization Space Curves

Examples

Parabolic path in 2D

$$
\begin{array}{c}\n x(s) = s \\
y(s) = s^2\n \end{array}\n \bigg\} \quad s \in [-1, 1]
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할) 1990

Examples of I-dim Parametrization Space Curves

Examples

Parabolic path in 2D

$$
\begin{array}{c}\n x(s) = s \\
y(s) = s^2\n \end{array}\n \bigg\}\n s \in [-1,1]
$$

Helical path in 3D

$$
\left\{\n \begin{array}{l}\n \chi(\theta) = \cos \theta \\
\chi(\theta) = \sin \theta \\
z(\theta) = \theta/2\pi\n \end{array}\n \right\}\n \theta \in [0, 10\pi]
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : \mathbf{r}(t), a \leq t \leq b$?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q ·

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : \mathbf{r}(t), a \leq t \leq b$?

 \triangleright Split the given path C into differential segments ds beween the end-points.

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : r(t), a \le t \le b$?

- \triangleright Split the given path C into differential segments ds beween the end-points.
- \blacktriangleright Find a smooth (continuous derivatives) 1D parametrization for C :

 $x = g(t)$, $y = h(t)$, $z = k(t)$ $\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{\hat{j}} + k(t)\hat{\mathbf{k}}, \quad a \le t \le b$

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : r(t), a \le t \le b$?

- \triangleright Split the given path C into differential segments ds beween the end-points.
- \blacktriangleright Find a smooth (continuous derivatives) 1D parametrization for C :

$$
x = g(t), y = h(t), z = k(t)
$$

$$
\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{j} + k(t)\mathbf{k}, \quad a \le t \le b
$$

4 0 > 4 4 + 4 = > 4 = > = + + 0 4 0 +

► Line Integral over path C is converted to a definite integral over $t \in [a, b]$:

$$
\int_C f(x,y,z)ds = \int_a^b f(x,y,z) \left(\frac{ds(t)}{dt} \right) dt
$$

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : r(t), a \le t \le b$?

- \triangleright Split the given path C into differential segments ds beween the end-points.
- \blacktriangleright Find a smooth (continuous derivatives) 1D parametrization for C :

$$
x = g(t), y = h(t), z = k(t)
$$

$$
\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{j} + k(t)\mathbf{k}, \quad a \le t \le b
$$

► Line Integral over path C is converted to a definite integral over $t \in [a, b]$:

$$
\int_C f(x,y,z)ds = \int_a^b f(x,y,z) \left(\frac{ds(t)}{dt} \right) dt = \int_a^b f[r(t)] \left| \frac{dr(t)}{dt} \right| dt
$$

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : r(t), a \le t \le b$?

- \triangleright Split the given path C into differential segments ds beween the end-points.
- \blacktriangleright Find a smooth (continuous derivatives) 1D parametrization for C :

$$
x = g(t), y = h(t), z = k(t)
$$

$$
\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{f} + k(t)\mathbf{f}, \quad a \le t \le b
$$

► Line Integral over path C is converted to a definite integral over $t \in [a, b]$:

$$
\int_C f(x, y, z) ds = \int_a^b f(x, y, z) \left(\frac{ds(t)}{dt} \right) dt = \int_a^b f[r(t)] \left| \frac{dr(t)}{dt} \right| dt
$$
\n
$$
= \int_a^b f(x, y, z) \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2} dt
$$

QUESTION: How to evaluate the LINE INTEGRAL of the scalar function $f(x, y, z)$ over a given space curve $C : r(t), a \le t \le b$?

- \triangleright Split the given path C into differential segments ds beween the end-points.
- \blacktriangleright Find a smooth (continuous derivatives) 1D parametrization for C :

$$
x = g(t), y = h(t), z = k(t)
$$

$$
\mathbf{r}(t) = g(t)\hat{\mathbf{i}} + h(t)\mathbf{j} + k(t)\mathbf{k}, \quad a \le t \le b
$$

► Line Integral over path C is converted to a definite integral over $t \in [a, b]$:

$$
\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x, y, z) \left(\frac{ds(t)}{dt} \right) dt = \int_{a}^{b} f[r(t)] \left| \frac{dr(t)}{dt} \right| dt
$$
\n
$$
= \int_{a}^{b} f(x, y, z) \sqrt{\left(\frac{dx}{dt} \right)^{2} + \left(\frac{dy}{dt} \right)^{2} + \left(\frac{dz}{dt} \right)^{2}} dt
$$
\n
$$
\equiv \int_{a}^{b} f[g(t), h(t), k(t)] \sqrt{\left(\frac{dg}{dt} \right)^{2} + \left(\frac{dh}{dt} \right)^{2} + \left(\frac{dk}{dt} \right)^{2}} dt
$$

Example

Find the length of a circular arc AB of radius R for $\theta \in [0, \alpha]$.

K ロ > K 레 > K 코 > K 코 > - 코 - Y Q Q Q

Example

Find the length of a circular arc AB of radius R for $\theta \in [0, \alpha]$.

Plane-polar Parametric form: $\mathbf{r}(\theta) = (R \cos \theta, R \sin \theta)$. ► $\mathbf{r}'(\theta) = (-R \sin \theta, R \cos \theta)$ and $|\mathbf{r}'(\theta)| = R$.

Example

Find the length of a circular arc AB of radius R for $\theta \in [0,\alpha]$.

- **Plane-polar Parametric form:** $\mathbf{r}(\theta) = (R \cos \theta, R \sin \theta)$.
- ► $\mathbf{r}'(\theta) = (-R \sin \theta, R \cos \theta)$ and $|\mathbf{r}'(\theta)| = R$.
- **I** The function we need to integrate here is $f[r(\theta)] = 1$.
- \blacktriangleright Length of arc is given by the line integral:

$$
L = \int_C f(\mathbf{r}) \, d\mathbf{l} = \int_C \left(\frac{d\mathbf{l}}{d\theta}\right) \, d\theta = \int_0^\infty |\mathbf{r}'(\theta)| \, d\theta
$$

Example

Find the length of a circular arc AB of radius R for $\theta \in [0,\alpha]$.

- **Plane-polar Parametric form:** $\mathbf{r}(\theta) = (R \cos \theta, R \sin \theta)$.
- ► $\mathbf{r}'(\theta) = (-R \sin \theta, R \cos \theta)$ and $|\mathbf{r}'(\theta)| = R$.
- **I** The function we need to integrate here is $f[r(\theta)] = 1$.
- \blacktriangleright Length of arc is given by the line integral:

$$
L = \int_C f(\mathbf{r}) \, dI = \int_C \left(\frac{dI}{d\theta}\right) \, d\theta = \int_0^\infty |\mathbf{r}'(\theta)| \, d\theta
$$

$$
= \int_0^\infty R d\theta = R\alpha
$$