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Line Integral of Vector Fields

De�nition
Let r(t) = g(t )̂i + h(t )̂j + k(t)k̂; t ∈ [a, b] is a parametrized curve C in R3 and
F is continuous vector �eld over R3. Then the LINE INTEGRAL of the vector
F = (Fx ,Fy ,Fz) over C between the end-pints A and B is given as

ˆ
C

F(r) · dr =

ˆ
AB

F(r) · (T̂ ds) =

ˆ
AB

F (r) cos θ ds

=

ˆ b

a

F [r(t)] cos [θ(t)]

(
ds(t)

dt

)
dt =

ˆ b

a

F [r(t)] cos [θ(t)] |r′(t)| dt

=

ˆ b

a

F [g(t), h(t), k(t)] cos [θ(t)]

√(
dg

dt

)2

+

(
dh

dt

)2

+

(
dk

dt

)2

dt
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Line Integral of Vector Fields

Corollary

If the Line Integral of F is de�ned along any simple closed curve/loop L (that

does not intesect with itself) in R3, it is termed as the CONTOUR INTEGRAL

or CIRCULATION of F about L, and expressed as˛

L

F(r) · dr =

˛

L

Fxdx + Fydy + Fzdz

Examples

1. WORK DONE, ∆WAB =
´
AB

F(r) · dr is the most familar example in
Physics of a line integral of a force �eld F(r).

2. For a CONSERVATIVE FIELD Fconsv. the net work done about EVERY

closed path vanishes:

∆WLoop =

˛
Fconsv.(r) · dr = 0
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Examples of Line Integral of Vector Fields

Example

Consider the inverse square force �eld, F(r) = αr/r3, where α > 0 is a constant
and r is the position vector. Find the work done in moving a particle along the
unit circle C : r(θ) = (cos θ, sin θ); θ ∈ [0, 2π].

The given path is circular and closed (end-point coincides with starting point),
with unit radius, |r(θ)| = r(θ) = 1. Thus, the work done is

∆W =

˛

C

F(r) · dr =

ˆ 2π

0

F [r(θ)] ·
(
dr(θ)

dθ

)
dθ

= α

ˆ 2π

0

(
cos θ̂i + sin θ̂j

r(θ)3

)
· (− sin θ̂i + cos θ̂j)dθ = 0

I This is a NECESSARY but not a su�cient condition for �consevativeness�
of F(r), since work done must be zero about EVERY closed path.

I NECESSARY & SUFFICIENT condition: What is curlF?

I The inverse square �eld with ∇× F = 0 is a conservative �eld.
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How to describe Surfaces in 3D?

I F (x , y , z) = c = const. is used to represent the general quation of a
surface in 3D, where F is a real smooth function of x , y and z .

I Surface can be OPEN or CLOSED types.
I z = f (x , y) is a typical form of an open surface in 3D space, where f is a

real smooth function of x and y .

Examples

(a) z = const. is an open plane surface parallel to XY plane

(b) Another open surface: z = sin
(√

x2 + y2
)
/
√

x2 + y2
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Surfaces with 2D Parametric Representations

Example

UNIT SPHERE: F (x , y , z) = x2 + y2 + z2 = 1

I The two open half surfaces described by z = ±
√
1− x2 − y2 .

I PARAMETRIC REPRESENTATION: Alternatively, it can be described in
terms of two real parameters θ and φ as:

r(θ, φ) = sin θ cos φ̂i + sin θ sin φ̂j + cos θk̂, θ ∈ [0, π], φ ∈ [0, 2π].
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Surface Parameterizations

Examples

1. CYLINDER: x2 + y2 = a2, −1 ≤ z ≤ 1 has radius a and height 2 units is
described as

r(φ, z) = a cos φ̂i + a sin φ̂j + z k̂, φ ∈ [0, 2π], z ∈ [−1, 1].

2. REGULAR CONE: z =
√

x2 + y2 of height H is described as

r(φ, z) = z cos φ̂i + z sin φ̂j + z k̂, φ ∈ [0, 2π], z ∈ [0,H].

3. PARABOLOID: r = x2 + y2 of height H is described as

r(r , φ) = r cos φ̂i + r sin φ̂j + r2k̂, r ∈ [0,H], φ ∈ [0, 2π].

4. HYPERBOLOID: z = x2 − y2 is described as

r(u, v) = u sec v̂ i + u tan v ĵ + u2k̂, u ∈ [0,∞], v ∈ (−π
2
,
π

2
).



How to represent Elemental Area on an Open Surface?

I Let S be a patch of area on a smooth two-sided open surface, z = f (x , y).
I Let R be the projection on the xy -plane with unit normal vector k̂.
I N̂ be the unit normal vector at any point on the surface.
I The projection of dS is the rectangular patch of area dx dy , i.e.,

dx dy = |̂k · N̂| dS = k̂ · dS

dS = N̂ dS = N̂

(
dx dy

|̂k · N̂|

)
.



Elemental Area on a Parametrized Surface r(u, v) : D → R3

I We need only Orthogonal parametrizations such that if the parameter lines
meet orthogonally in the 2-dim abstract parameter domain D ∈ R2, then
the co-ordinate lines on the surface S also meet orthogonally .

I Non-orthogonal parametrizations are cumbersome and not useful.

Tangent Vectors : Tu =

(
∂r

∂u

)
(u0,v0)

; Tv =

(
∂r

∂v

)
(u0,v0)



Finding Elemental Area on a Parametrized Surface

Example

I Paraboloid of Revolution:

r (r , φ) = r cos φ̂i+ r sin φ̂j+ r2k̂

I Parameter domain:

D = {r × φ | r ∈ [0, 3], φ ∈ [0, 2π]}

I Elemental area at A shown in
green:

r(A) = r(r = 2, φ = 0) = 2̂i+4k̂

I Tangent vectors at A on the
co-ordinate lines:

Tr =

(
∂r

∂r

)
A

= î+4k̂ ; Tφ =

(
∂r

∂φ

)
A

= 2̂j



Finding Elemental Area on a Parametrized Surface (contd.)

r (r , φ) = r cos φ̂i+r sin φ̂j+r2k̂; r ∈ [0, 3], φ ∈ [0, 2π], and A ≡ r(2, 0) = 2̂i+4k̂

Line elements at A:

−→
AB = Tr dr =

(
∂r

∂r

)
A

dr = (̂i + 4k̂) dr

−→
AC = Tφ dφ=

(
∂r

∂φ

)
A

dφ = 2̂j dφ

Outward Normal vector at A:

N = Tφ×Tr =

(
∂r

∂φ

)
A

×
(
∂r

∂r

)
A

= 8̂i−2k̂

Scalar area element:

dS =
∣∣∣−→AB ×−→AC ∣∣∣ = |N| dr dφ

= 2
√
17 dr dφ

Vector area element:

dS ≡ N̂ dS =
−→
AB×

−→
AC = N dr dφ =

(
8̂i− 2k̂

)
dr dφ

A

B

C



Surface Integrals of Scalar Fields

De�nition
A SURFACE INTEGRAL of a continuous scalar �eld, g = g(x , y , z) is the
generalization of a 2D de�nite integral where the doman of integration is a
smooth or piecewise smooth surface S : F (x , y , z) = c , or parametrized as
r = r(u, v), with (u, v) ∈ D ⊂ R2.

Fact
Surface integral CAN NOT be evaluated without reducing to double integral!



Double Integral is di�erent from Surface Integral !

De�nition
A DOUBLE INTEGRAL is essentially a 2D de�nite integral where the doman
of integration is the region R ⊂ R2 on the co-ordinate xy -plane for the given
surface S : z = f (x , y). Here the integral yields the volume of the cylindrical
region under the surface.



Surface Integral of Scalar Fields (with Surface Parameterization)

De�nition
The SURFACE INTEGRAL of a continuous scalar function g(r) over a smooth
or piecewise smooth surface S , and parametrized as r = r(u, v), with
(u, v) ∈ D ⊂ R2, is given as

¨

S

g(r) dS =

¨

D

g [r(u, v)] |N| du dv =

¨

D

g [r(u, v)] |Tu × Tv | du dv

where, dS = |N| du dv and |N| = |Tu × Tv | is the magni�cation/scale factor
termed as the JACOBIAN of transformation.

Corollary

I In particular the surface area is of S is obtained with g(r) = 1, i.e.,

Area =

¨

S

1 dS =

¨

D

|Tu × Tv | du dv =

¨

D

∣∣∣∣( ∂r∂u
)
×
(
∂r

∂v

)∣∣∣∣ du dv
I CLOSED SURFACE INTEGRAL over surface S enclosing some volume:‹

S

g(r) dS
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Surfaces Without Parameterization: Surface Integral → Double Integral

Association between dS and elemental projected area on any co-ordinate plane:
I N̂ be the unit normal vector at any point on the surface.

I Projective Correspondence of dS with the elemental area dx dy on R

dx dy = |N̂ · k̂| dS

dS =
dx dy

|N̂ · k̂|
.



Surface Integrals of Scalar Fields in Cartesian System

Reducing to a double integral: If N̂ be the unit normal vector at any point on

the smooth two-sided open surface, S : z = f (x , y), then the projection of dS

on R is the rectangular patch given by dxdy = N̂ · k̂ dS . With the equation of
surface written in the form

F (x , y , z) = f (x , y)− z = 0, N̂ = ± ∇F (x , y , z)

|∇F (x , y , z)| ,

the surface integrals of a continuous scalar �eld g(x , y , z) is given by

¨

S

g(x , y , z) dS =

¨

R

g(x , y , f (x , y))
dx dy

|N̂ · k̂|
=

¨

R

g(x , y , f )
|∇F (x , y , f )|
|∇F (x , y , f ) · k̂|

dx dy



Parametric Surface Integral of a Scalar Field

Example

Calculate the area of the upper hemispherical surface of radius a.

I Parameterization: Spherical-Polar System

P(x , y , z) ≡ r(θ, φ) = a sin θ cos φ̂i + a sin θ sin φ̂j + a cos θk̂

I Parameter Domain: D = {θ × φ | θ ∈ [0, π/2], φ ∈ [0, 2π]}
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Parametric Surface Integral of a Scalar Field (contd.)

Example

Calculate the area of the upper hemispherical surface of radius a.

I With Parametrization: Spherical-polar system

I r(θ, φ) = a (sin θ cosφ, sin θ sinφ, cos θ) with θ ∈ [0, π/2] and φ ∈ [0, 2π]

I Tθ = ∂r/∂θ = a (cos θ cosφ, cos θ sinφ,− sin θ)

I Tφ = ∂r/∂φ = a (− sin θ sinφ, sin θ cosφ, 0)

I N = Tθ × Tφ = ∂r/∂θ × ∂r/∂φ = a2
(
sin2 θ cosφ, sin2 θ sinφ, sin θ cos θ

)
I JACOBIAN: |N| = |Tθ × Tφ| = a2 sin θ

I The area of hemisphere is

Area =

¨

S

1 dS =

¨

D

|Tθ × Tφ| dθ dφ =

ˆ π/2

0

ˆ 2π

0

a2 sin θ dθ dφ = 2πa2

I Without parametrization: Using Cartesian system

I S : z = f (x , y) =
√

a2 − x2 − y2 ≥ 0 is the open upper hemisphere
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Parametric Surface Integral of a Scalar Field (contd.)
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Parametric Surface Integral of a Scalar Field (contd.)

Example

Calculate the area of the upper hemispherical surface of radius a.

I With Parametrization: Spherical-polar system

I r(θ, φ) = a (sin θ cosφ, sin θ sinφ, cos θ) with θ ∈ [0, π/2] and φ ∈ [0, 2π]

I Tθ = ∂r/∂θ = a (cos θ cosφ, cos θ sinφ,− sin θ)

I Tφ = ∂r/∂φ = a (− sin θ sinφ, sin θ cosφ, 0)

I N = Tθ × Tφ = ∂r/∂θ × ∂r/∂φ = a2
(
sin2 θ cosφ, sin2 θ sinφ, sin θ cos θ

)
I JACOBIAN: |N| = |Tθ × Tφ| = a2 sin θ

I The area of hemisphere is

Area =

¨

S

1 dS =

¨

D

|Tθ × Tφ| dθ dφ =

ˆ π/2

0

ˆ 2π

0

a2 sin θ dθ dφ = 2πa2

I Without parametrization: Using Cartesian system

I S : z = f (x , y) =
√

a2 − x2 − y2 ≥ 0 is the open upper hemisphere



Surface Integrals of a Scalar Field (without Parametrization)
Example

The equation of the upper hemispherical surface of radius a is represented as

F (x , y , z) = x2 + y2 + z2 − a2 = 0; z ≥ 0

.



Surface Integrals of Vector Fields: Flux Integrals

Example

Consider a steady state �ow of an incompressible �uid, which can be described
by a velocity �eld v(r). What is the rate of �ow of �uid across the surface?

The TOTAL FLUX yields the amount or volume of �uid �owing across the

given surface in unit time, i.e.,

Total Flux =

¨

S

v(r) · dS =

¨

S

v(r) · N̂ dS
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Example
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Parametric Flux Integrals

De�nition
If S be a smooth or piecewise smooth surface, parametrized as r = r(u, v) with
(u, v) ∈ D ⊂ R2, then surface or FLUX INTEGRAL of a continuous vector �eld
F(r) yields its �ux through the surface S , i.e.,

Flux of F =

¨

S

F(r) ·dS =

¨

S

F(r) ·N̂ dS = ±
¨

D

F [r(u, v)] ·(Tu×Tv ) du dv

using the correspondence dS = |N| du dv , with the �magni�cation/scale factor�
or JACOBIAN given by the modulus of the normal vector:

N = ±(Tu × Tv ) = ±
(
∂r

∂u
× ∂r

∂v

)

Note:

I There is always a two-fold ambiguity in deciding the sign of N for any
general two-sided OPEN SURFACE.

I CLOSED SURFACE INTEGRAL: N̂ ≡ N̂out is conventionally chosen as the

outward normal, then the surface integral yields

Net Outward Flux =

‹

S

F(r) · N̂outdS



Parametric Flux Integrals

De�nition
If S be a smooth or piecewise smooth surface, parametrized as r = r(u, v) with
(u, v) ∈ D ⊂ R2, then surface or FLUX INTEGRAL of a continuous vector �eld
F(r) yields its �ux through the surface S , i.e.,

Flux of F =

¨

S

F(r) ·dS =

¨

S

F(r) ·N̂ dS = ±
¨

D

F [r(u, v)] ·(Tu×Tv ) du dv

using the correspondence dS = |N| du dv , with the �magni�cation/scale factor�
or JACOBIAN given by the modulus of the normal vector:

N = ±(Tu × Tv ) = ±
(
∂r

∂u
× ∂r

∂v

)
Note:

I There is always a two-fold ambiguity in deciding the sign of N for any
general two-sided OPEN SURFACE.

I CLOSED SURFACE INTEGRAL: N̂ ≡ N̂out is conventionally chosen as the

outward normal, then the surface integral yields

Net Outward Flux =

‹

S

F(r) · N̂outdS



Parametric Flux Integrals

De�nition
If S be a smooth or piecewise smooth surface, parametrized as r = r(u, v) with
(u, v) ∈ D ⊂ R2, then surface or FLUX INTEGRAL of a continuous vector �eld
F(r) yields its �ux through the surface S , i.e.,

Flux of F =

¨

S

F(r) ·dS =

¨

S

F(r) ·N̂ dS = ±
¨

D

F [r(u, v)] ·(Tu×Tv ) du dv

using the correspondence dS = |N| du dv , with the �magni�cation/scale factor�
or JACOBIAN given by the modulus of the normal vector:

N = ±(Tu × Tv ) = ±
(
∂r

∂u
× ∂r

∂v

)
Note:

I There is always a two-fold ambiguity in deciding the sign of N for any
general two-sided OPEN SURFACE.

I CLOSED SURFACE INTEGRAL: N̂ ≡ N̂out is conventionally chosen as the

outward normal, then the surface integral yields

Net Outward Flux =

‹

S

F(r) · N̂outdS



Parametric Flux Integrals (contd.)

Example

Calculate the �ux of F(x , y , z) = (x î + y ĵ + z k̂)/(x2 + y2 + z2)3/2 through the
same upper hemispherical surface of radius a.

I Spherical-polar Parametrization: F(r) = r/r3

I r =a (sin θ cosφ, sin θ sinφ, cos θ)

I Parameter domain: D = {θ × φ | θ ∈ [0, π/2], φ ∈ [0, 2π]}
I Tθ = ∂r/∂θ = a (cos θ cosφ, cos θ sinφ,− sin θ)

I Tφ = ∂r/∂φ = a (− sin θ sinφ, sin θ cosφ, 0)

I N = Tθ × Tφ = a2 sin θ (sin θ cosφ, sin θ sinφ, cos θ)

I JACOBIAN: |N| = |Tθ × Tφ| = a2 sin θ

I FLUX: On the hemispherical surface S , r = a , N̂ = r̂ and N = (a2 sin θ)̂r

NetFlux =

¨

S

F(r) · N̂ dS =

¨

D

[F [r(θ, φ)] ·N]S dθ dφ

=

¨

D

(
ar̂

a3

)
· r̂ (a2 sin θ) dθ dφ

=

ˆ π/2

0

sin θ dθ

ˆ 2π

0

dφ = 2π.



Parametric Flux Integrals (contd.)
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Parametric Flux Integrals (contd.)
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Parametric Flux Integrals (contd.)

Example
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Parametric Flux Integrals (contd.)
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Parametric Flux Integrals (contd.)

Example
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=
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Volume Integrals
De�nition
A volume integral is simply a 3D de�nitie integral or TRIPLE INTEGRAL of a
continuous scalar �eld f (x , y , z), or a vector �eld A(x , y , z), de�ned over a
certain region of space V⊂R3:

I Di�erential volume in Cartesian System : dV ≡ dz dy dx

IScalar =

˚

V

f (r) dV =

x=bˆ

x=a

 y=g2(x)ˆ

y=g1(x)

 z=f2(x,y)ˆ

z=f1(x,y)

f (x , y , z) dz

 dy

 dx

IVector =

˚

V

A(r) dV =

x=bˆ

x=a

 y=g2(x)ˆ

y=g1(x)

 z=f2(x,y)ˆ

z=f1(x,y)

A(x , y , z) dz

 dy

 dx

I Di�erential volume with 3D Parametrization, r = r(u, v ,w) with
(u, v ,w) ∈ D ⊂ R3:

dV = |Tu · (Tv × Tw )| du dv dw

I The magni�cation/scale factor J = |Tu · (Tv × Tw )| is the JACOBIAN.
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Volume Integrals in Cartesian System

Example

Determine the volume integral of φ(x , y , z) = 45x2y , over the closed region V

bounded by the co-ordinate planes x = 0, y = 0, z = 0, and the plane
4x + 2y + z = 8.

I We choose to project the regionV onto the xy -plane, i.e., area R bounded
by x-axis, y -axis and the line 4x + 2y = 8.



I Here, it is convenient to �rst perform the z-integration, and then the
double integral over the projected region R in the xy -plane.

I Limits of the integration are:

z = f1(x , y) = 0 , z = f2(x , y) = 8− 4x − 2y ,

y = g1(x) = 0 , y = g2(x) = 4− 2x ,

x = 0 , x = 2

I Volume Integral:

˚

V

φ(x , y , z) dV =

˚

V

45x2y dx dy dz

=

¨

R

 z=8−4x−2yˆ

z=0

dz

 45x2y dx dy

= 45

x=2ˆ

x=0

x2

 y=4−2xˆ

y=0

y(8− 4x − 2y) dy

 dx

= 45

x=2ˆ

x=0

x2

3
(4− 2x)3dx = 128
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