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Line Integral of Vector Fields
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Let r(t) = g(t)i + h(t)] + k(t)k; t € [a, b] is a parametrized curve C in R* and
F is continuous vector field over R®. Then the LINE INTEGRAL of the vector
F = (F«, Fy,, F.) over C between the end-pints A and B is given as

/CF(r)~dr = /ABF(r)-('i'ds):/AB F(r)cosfds
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Let r(t) = g(t)i + h(t)] + k(t)k; t € [a, b] is a parametrized curve C in R* and
F is continuous vector field over R®. Then the LINE INTEGRAL of the vector
F = (F«, Fy,, F.) over C between the end-pints A and B is given as

/c F(r) - dr

/ F(r) - (T ds) =/ F(r) cosf ds
AB AB

/ Flr(£)] cos [0(£)] (‘ﬁ”) dt = / Flr(£)] cos [0(2)] ¥ (¢)] dt
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Let r(t) = g(t)i + h(t)] + k(t)k; t € [a, b] is a parametrized curve C in R* and
F is continuous vector field over R®. Then the LINE INTEGRAL of the vector
F = (F«, Fy,, F.) over C between the end-pints A and B is given as

/CF(r) Sdr = /AB F(r)- (T ds) = /AB F(r)cosfds
= [ Frencostocon () ot = [ Fiencostoe o) o

a

= /ab Flg(t), h(t), k(t)] cos [6(t)] \/<Z§)2+ (%>2+ (%)2&




Line Integral of Vector Fields

Corollary

If the Line Integral of F is defined along any simple closed curve/loop L (that
does not intesect with itself) in R3, it is termed as the CONTOUR INTEGRAL
or CIRCULATION of F about L, and expressed as

%F(r) Cdr = %dex + F,dy + F,dz
L 1
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Corollary

If the Line Integral of F is defined along any simple closed curve/loop L (that
does not intesect with itself) in R3, it is termed as the CONTOUR INTEGRAL
or CIRCULATION of F about L, and expressed as

%F(r) cdr = %dex + F,dy + F,dz
L L
Examples

1. WORK DONE, AWag = [, F(r) - dr is the most familar example in
Physics of a line integral of a force field F(r).



Line Integral of Vector Fields

Corollary

If the Line Integral of F is defined along any simple closed curve/loop L (that
does not intesect with itself) in R3, it is termed as the CONTOUR INTEGRAL
or CIRCULATION of F about L, and expressed as

%F(r) cdr = %dex + F,dy + F,dz
L L
Examples

1. WORK DONE, AWag = [, F(r) - dr is the most familar example in
Physics of a line integral of a force field F(r).

2. For a CONSERVATIVE FIELD F.snsy. the net work done about EVERY
closed path vanishes:

AWioop = %Fconsv(r) -dr=0



Examples of Line Integral of Vector Fields

Example

Consider the inverse square force field, F(r) = ar/r®, where a > 0 is a constant
and r is the position vector. Find the work done in moving a particle along the
unit circle C: r(8) = (cos ¥, sin0); 6 € [0, 2x].



Examples of Line Integral of Vector Fields

Example

Consider the inverse square force field, F(r) = ar/r®, where a > 0 is a constant
and r is the position vector. Find the work done in moving a particle along the
unit circle C: r(8) = (cos ¥, sin0); 6 € [0, 2x].

The given path is circular and closed (end-point coincides with starting point),
with unit radius, |r(0)| = r(6) = 1. Thus, the work done is

AW = §£F(r)~dr:/027rF[r(9)]-(d:](;)> dé
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Examples of Line Integral of Vector Fields

Example

Consider the inverse square force field, F(r) = ar/r®, where a > 0 is a constant
and r is the position vector. Find the work done in moving a particle along the
unit circle C: r(8) = (cos ¥, sin0); 6 € [0, 2x].

The given path is circular and closed (end-point coincides with starting point),
with unit radius, |r(0)| = r(6) = 1. Thus, the work done is

AW = §£F(r).dr=/02”F[r(e)].(d;(;)> dé

27 H H H
_— (MHW)(_sinmcosej)de—o
0

r(0)3
» This is a NECESSARY but not a sufficient condition for “consevativeness”
of F(r), since work done must be zero about EVERY closed path.
» NECESSARY & SUFFICIENT condition: What is curl F?

» The inverse square field with V x F = 0 is a conservative field.



How to describe Surfaces in 3D?

» F(x,y,z) = c = const. is used to represent the general quation of a
surface in 3D, where F is a real smooth function of x, y and z.
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» Surface can be OPEN or CLOSED types.



How to describe Surfaces in 3D?

» F(x,y,z) = c = const. is used to represent the general quation of a
surface in 3D, where F is a real smooth function of x, y and z.

» Surface can be OPEN or CLOSED types.

» z = f(x,y) is a typical form of an open surface in 3D space, where f is a
real smooth function of x and y.



How to describe Surfaces in 3D?

» F(x,y,z) = c = const. is used to represent the general quation of a
surface in 3D, where F is a real smooth function of x, y and z.

» Surface can be OPEN or CLOSED types.

» z = f(x,y) is a typical form of an open surface in 3D space, where f is a
real smooth function of x and y.

Examples

(a) z = const. is an open plane surface parallel to XY plane



How to describe Surfaces in 3D?

» F(x,y,z) = c = const. is used to represent the general quation of a
surface in 3D, where F is a real smooth function of x, y and z.

» Surface can be OPEN or CLOSED types.

» z = f(x,y) is a typical form of an open surface in 3D space, where f is a

real smooth function of x and y.

Examples

(a) z = const. is an open plane surface parallel to XY plane
(b) Another open surface: z = sin <\/x2 + y2> /X2 + y?




Surfaces with 2D Parametric Representations
Example
UNIT SPHERE: F(x,y,z) =x*+y*+ 22 =1
» The two open half surfaces described by z = +4/1 — x2 — y2 .



Surfaces with 2D Parametric Representations

Example
UNIT SPHERE: F(x,y,z) =x*+y*+ 22 =1
» The two open half surfaces described by z = +/1 — x2 — y2 .

» PARAMETRIC REPRESENTATION: Alternatively, it can be described in
terms of two real parameters 6 and ¢ as:

r(6, ¢) = sin 6 cos ¢i + sin Osin @) + cos bk, 6 € [0,7], ¢ € [0, 2n].




Surface Parameterizations

Examples

1. CYLINDER: x* + y® = a%, —1 < z < 1 has radius a and height 2 units is
described as

r(¢, z) = acos @i + asin ¢j+zl’;, ¢ €1[0,27], z € [-1,1].

2. REGULAR CONE: z = \/x2 + y? of height H is described as

r(¢,z) = zcos i + zsin @) + zk, ¢ € [0,27], z € [0, H].

3. PARABOLOID: r = x*® 4 y? of height H is described as

r(r,¢) = rcos @i+ rsin &)+ rik, re [0, H], ¢ € [0,2n].

4. HYPERBOLOID: z = x? — y? is described as

r(u,v) = usecvi+ utanvj + u’k, u € [0, ], v € (—g, g)



How to represent Elemental Area on an Open Surface?

> Let S be a patch of area on a smooth two-sided open surface, z = f(x, y).
> Let R be the projection on the xy-plane with unit normal vector k.

> N be the unit normal vector at any point on the surface.

» The projection of dS is the rectangular patch of area dxdy, i.e.,

dx dy k-R|dS=k-dS

dS

dx dy
Nds=N
(%)

= f(x,y)




Elemental Area on a Parametrized Surface r(u,v) : D — R3

» We need only Orthogonal parametrizations such that if the parameter lines
meet orthogonally in the 2-dim abstract parameter domain D € R?, then
the co-ordinate lines on the surface S also meet orthogonally .

» Non-orthogonal parametrizations are cumbersome and not useful.

Tangent Vectors: T, = ﬂ ;o Ty = or
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Finding Elemental Area on a Parametrized Surface

Example

» Paraboloid of Revolution:

r(r,¢) = rcos@i+rsin &+ r’k

» Parameter domain:

D={rx¢|rel0,3], ¢ €[0,27]}

» Elemental area at A shown in
green:

r(A) =r(r =2,¢=0) = 2i+4k

» Tangent vectors at A on the
co-ordinate lines:



Finding Elemental Area on a Parametrized Surface (contd.)
r(r,¢) = rcosi+rsingi+rik; re0,3],¢ €[0,2n], and A = ¢(2,0) = 2i+4k

Line elements at A:

AB =T, dr = <@> dr = (i + 4k) dr
or),

AC =T, dp= (%) d¢ = 2jd¢
A

Outward Normal vector at A:

or or PR
N = T¢><Tr = <%>AX (E)A = 8|—2k

Scalar area element:

ds = ‘ﬁ xA?‘ — IN| drd¢
2V17 dr d¢

Vector area element:

dS = R dS = ABXAC = N dr d¢ — (8?-2&) drd¢



Surface Integrals of Scalar Fields

Definition
A SURFACE INTEGRAL of a continuous scalar field, g = g(x,y, z) is the
generalization of a 2D definite integral where the doman of integration is a
smooth or piecewise smooth surface S : F(x,y,z) = c, or parametrized as
r=r(u,v), with (u,v) € D C R>.
r(u, v)
e

[y
.Ang)dS

D c R?

Fact
Surface integral CAN NOT be evaluated without reducing to double integral!



Double Integral is different from Surface Integral !

Definition

A DOUBLE INTEGRAL is essentially a 2D definite integral where the doman
of integration is the region R C R? on the co-ordinate xy-plane for the given
surface S : z = f(x,y). Here the integral yields the volume of the cylindrical
region under the surface.




Surface Integral of Scalar Fields (with Surface Parameterization)

Definition

The SURFACE INTEGRAL of a continuous scalar function g(r) over a smooth
or piecewise smooth surface S, and parametrized as r = r(u, v), with

(u,v) € D C R?, is given as

//g(")dS://'g[r(u7 v)]|N\dudv:/]g[r(u’ V)] [Tu x Ty| dudv
s D o

where, dS = |N|dudv and |N| = |T, x T,| is the magnification/scale factor
termed as the JACOBIAN of transformation.




Surface Integral of Scalar Fields (with Surface Parameterization)

Definition

The SURFACE INTEGRAL of a continuous scalar function g(r) over a smooth
or piecewise smooth surface S, and parametrized as r = r(u, v), with

(u,v) € D C R?, is given as

//g(")dS://'g[r(u7 v)]|N\dudv:/]g[r(u’ V)] [Tu x Ty| dudv
s D o

where, dS = |N|dudv and |N| = |T, x T,| is the magnification/scale factor
termed as the JACOBIAN of transformation.
Corollary

> In particular the surface area is of S is obtained with g(r) =1, i.e.,

Area—//lds //IT XTv|d“dV_//‘( ) ( )

du dv




Surface Integral of Scalar Fields (with Surface Parameterization)

Definition

The SURFACE INTEGRAL of a continuous scalar function g(r) over a smooth
or piecewise smooth surface S, and parametrized as r = r(u, v), with

(u,v) € D C R?, is given as

//g(")dS://'g[r(u7 v)]|N\dudv://g[r(u’ V)] [Tu x Ty| dudv
s D o

where, dS = |N|dudv and |N| = |T, x T,| is the magnification/scale factor
termed as the JACOBIAN of transformation.
Corollary

> In particular the surface area is of S is obtained with g(r) =1, i.e.,

Area—//lds //IT XTv|d“dV_//‘( ) ( )

> CLOSED SURFACE INTEGRAL over surface S enclosing some volume:

1 (v ds

S

du dv




Surfaces Without Parameterization: Surface Integral — Double Integral

Association between dS and elemental projected area on any co-ordinate plane:
» N be the unit normal vector at any point on the surface.

> Projective Correspondence of dS with the elemental area dx dy on R

dxdy = |N-k|dS
dx dy
s =
Nkl

= f(x.y)




Surface Integrals of Scalar Fields in Cartesian System

Reducing to a double integral: If N be the unit normal vector at any point on

the smooth two-sided open surface, S : z = f(x, y), then the projection of dS
on R is the rectangular patch given by dxdy = N -k dS. With the equation of
surface written in the form

VF(x,y,2)

F(x,y,z) =f(x,y) —z=0, N=+ ,
Goyez) = 10) VF(x.y.2)

the surface integrals of a continuous scalar field g(x, y, z) is given by

Z/g(xmaz) d5=[/g(x7y7 f(x.y)) ‘ﬁdé' // (v, f W'ZZE’X;’;)'R' dx d

y



Parametric Surface Integral of a Scalar Field

Example
Calculate the area of the upper hemispherical surface of radius a.



Parametric Surface Integral of a Scalar Field

Example
Calculate the area of the upper hemispherical surface of radius a.

» Parameterization: Spherical-Polar System

P(x,y,z) =¢(0,¢) = asinf cos #i + asin Osin ¢) + acos Ok

» Parameter Domain: D= {0 x ¢ |6 € [0,7/2], ¢ € [0, 2]}

e P(x,y,z)\\\\\
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Parametric Surface Integral of a Scalar Field (contd.)

Example
Calculate the area of the upper hemispherical surface of radius a.
» With Parametrization: Spherical-polar system
> r(0, ¢) = a(sinfcos ¢, sinbsin ¢, cosh) with 6 € [0,7/2] and ¢ € [0, 27]
> Ty = 0r/00 = a(cos b cos ¢, cosbsin ¢, —sin )
» T, =0r/0¢ = a(—sinOsin ¢, sinf cos ¢, 0)



Parametric Surface Integral of a Scalar Field (contd.)

Example
Calculate the area of the upper hemispherical surface of radius a.
» With Parametrization: Spherical-polar system
r(0,¢) = a(sin 6 cos ¢,sin O sin ¢, cos ) with 6 € [0, 7/2] and ¢ € [0, 27]
Ty = 9r/00 = a(cos b cos ¢, cos Osin ¢, —sin H)
Ty = 0r/0¢ = a(—sinOsin ¢, sin 6 cos ¢, 0)
N =Ty x Ty =0r/00 x Or/0¢ = a° (sin § cos ¢, sin” O sin ¢, sin 6 cos 6)
JACOBIAN: |N| = [Ty x Ty| = a®sin0

vvYyyvyy



Parametric Surface Integral of a Scalar Field (contd.)

Example
Calculate the area of the upper hemispherical surface of radius a.
» With Parametrization: Spherical-polar system
r(0,¢) = a(sin 6 cos ¢,sin O sin ¢, cos ) with 6 € [0, 7/2] and ¢ € [0, 27]
Ty = 9r/00 = a(cos b cos ¢, cos Osin ¢, —sin H)
Ty = 0r/0¢ = a(—sinOsin ¢, sin 6 cos ¢, 0)
N =Ty x Ty =0r/00 x Or/0¢ = a° (sin § cos ¢, sin” O sin ¢, sin 6 cos 6)
JACOBIAN: |N| = [Ty x Ty| = a®sin0

The area of hemisphere is

/2 27
Area://ldS://|Tg><T¢\d0d¢:/ / a’sinfdfdp = 27ma°
0 0
S D

vVvYvyVvVvyVyvyy



Parametric Surface Integral of a Scalar Field (contd.)

Example
Calculate the area of the upper hemispherical surface of radius a.
» With Parametrization: Spherical-polar system
r(0,¢) = a(sin 6 cos ¢,sin O sin ¢, cos ) with 6 € [0, 7/2] and ¢ € [0, 27]
Ty = 9r/00 = a(cos b cos ¢, cos Osin ¢, —sin H)
Ty = 0r/0¢ = a(—sinOsin ¢, sin 6 cos ¢, 0)
N =Ty x Ty =0r/00 x Or/0¢ = a° (sin § cos ¢, sin” O sin ¢, sin 6 cos 6)
JACOBIAN: |N| = [Ty x Ty| = a®sin0

The area of hemisphere is

/2 27
Area://ldS://|Tg><T¢\d0d¢:/ / a’sinfdfdp = 27ma°
0 0
S D

» Without parametrization: Using Cartesian system

S: z="f(x,y) = /a* — x2 — y2 > 0 is the open upper hemisphere

vVvYvyVvVvyVyvyy

v



Surface Integrals of a Scalar Field (without Parametrization)
Example

The equation of the upper hemispherical surface of radius a is represented as
F(x,y,2)=x*+y*4+2°—-a"=0,z>0

anormalto x2+y%+2% = a% is

VaZ4y42%) = 2xi+ 2y + 22k

Then the unit normal is

ltl— i+2yi+2k _ zityjrzk

i ; " VaxZeay?+4:° a
- 2 4y2ea?, 220
Aran sz d: dy - ff dx dy ﬂf f dy d'x___
| M-kl za o 1/02_:‘2_?2
I R x==-0 R

2
= J- ’ ——p_d'o dgp = 2re®
1/02-{02

é=0 p=0

where x = pcos¢h, y = o singh and dydx is replaced by o dp dob.



Surface Integrals of Vector Fields: Flux Integrals

Example

Consider a steady state flow of an incompressible fluid, which can be described
by a velocity field v(r). What is the rate of flow of fluid across the surface?

%
@@e‘b

B




Surface Integrals of Vector Fields: Flux Integrals

Example

Consider a steady state flow of an incompressible fluid, which can be described
by a velocity field v(r). What is the rate of flow of fluid across the surface?

The TOTAL FLUX yields the amount or volume of fluid flowing across the
given surface in unit time, i.e.,

Total Flux = // .dS = // )-NdS




Parametric Flux Integrals
Definition
If S be a smooth or piecewise smooth surface, parametrized as r = r(u, v) with

(u,v) € D C R?, then surface or FLUX INTEGRAL of a continuous vector field
F(r) yields its flux through the surface S, i.e.,

Flux of F = // )-dS = //

using the correspondence dS = |N| du dv, with the “magnification/scale factor”
or JACOBIAN given by the modulus of the normal vector:

or or
N_:t(TuxTV)_:t(%xm>

)R ds = j://F[r(u D] (Tux Ty) dudv




Parametric Flux Integrals
Definition
If S be a smooth or piecewise smooth surface, parametrized as r = r(u, v) with

(u,v) € D C R?, then surface or FLUX INTEGRAL of a continuous vector field
F(r) yields its flux through the surface S, i.e.,

Flux of F = // )-dS = //

using the correspondence dS = |N| du dv, with the “magnification/scale factor”
or JACOBIAN given by the modulus of the normal vector:

or or
N_:t(TuxTV)_:t(%xm>

)R ds = j://F[r(u D] (Tux Ty) dudv

Note:

» There is always a two-fold ambiguity in deciding the sign of N for any
general two-sided OPEN SURFACE.



Parametric Flux Integrals
Definition
If S be a smooth or piecewise smooth surface, parametrized as r = r(u, v) with

(u, v) € D C R?, then surface or FLUX INTEGRAL of a continuous vector field
F(r) yields its flux through the surface S, i.e.,

Flux of F = // )-dS = //

using the correspondence dS = |N| du dv, with the “magnification/scale factor”
or JACOBIAN given by the modulus of the normal vector:

or or
N_:t(TuxTV)_:t(%xm>

)R ds = j://F[r(u W] (Tox T,) du dv

Note:

» There is always a two-fold ambiguity in deciding the sign of N for any
general two-sided OPEN SURFACE.

> CLOSED SURFACE INTEGRAL: N = Ny is conventionally chosen as the
outward normal, then the surface integral yields
Net Outward Flux = # F(r) - NoudS
5



Parametric Flux Integrals (contd.)

Example
Calculate the flux of F(x,y,z) = (xi + yj + zk) /(x> + y? + z%)*/? through the
same upper hemispherical surface of radius a.



Parametric Flux Integrals (contd.)

Example
Calculate the flux of F(x,y,z) = (xi + yj + zk) /(x> + y? + z%)*/? through the
same upper hemispherical surface of radius a.

> Spherical-polar Parametrization: F(r) =r/r’



Parametric Flux Integrals (contd.)

Example
Calculate the flux of F(x,y,z) = (xi + yj + zk) /(x> + y? + z%)*/? through the
same upper hemispherical surface of radius a.

> Spherical-polar Parametrization: F(r) =r/r’
» r =a(sin 0 cos ¢,sin Osin ¢, cos 0)
> Parameter domain: D = {0 x ¢|6 € [0,7/2], ¢ € [0, 2]}



Parametric Flux Integrals (contd.)

Example

Calculate the flux of F(x,y,z) = (xi + yj + zk) /(x> + y? + z%)*/? through the
same upper hemispherical surface of radius a.

>

vVvyYvYyVvyyvyy

Spherical-polar Parametrization: F(r) =r/r*

r =a(sin 6 cos ¢, sin 0 sin ¢, cos 0)

Parameter domain: D = {0 x ¢| 6 € [0,7/2], ¢ € [0,27]}
To = Or/90 = a(cos 0 cos ¢, cos O sin ¢, — sin 0)

Ty = 0r/0¢ = a(—sinOsin ¢, sin 6 cos ¢, 0)

N =Ty x Ty = a®sin 6 (sin § cos ¢, sin O sin ¢, cos )
JACOBIAN: |N| = [Ty x Ty| = a®sinf



Parametric Flux Integrals (contd.)

Example

Calculate the flux of F(x,y,z) = (xi + yj + zk) /(x> + y? + z%)*/? through the
same upper hemispherical surface of radius a.

>

vVVvVvVvyVvVvyYVvyy

Spherical-polar Parametrization: F(r) =r/r*

r =a(sin 6 cos ¢, sin 0 sin ¢, cos 0)

Parameter domain: D = {0 x ¢| 6 € [0,7/2], ¢ € [0,27]}

To = Or/90 = a(cos 0 cos ¢, cos O sin ¢, — sin 0)

Ty = 0r/0¢ = a(—sinOsin ¢, sin 6 cos ¢, 0)

N =Ty x Ty = a®sin 6 (sin § cos ¢, sin O sin ¢, cos )

JACOBIAN: |N| = [Ty x Ty| = a%sin

FLUX: On the hemispherical surface S, r = a, N =% and N = (a*sin §)¢

NetFlux = [/ F(r)-NdS = [F[r(6,9)] - N]s d6 do
/ oo,

D



Parametric Flux Integrals (contd.)

Example

Calculate the flux of F(x,y,z) = (xi + yj + zk) /(x> + y? + z%)*/? through the
same upper hemispherical surface of radius a.

>

vVVvVvVvyVvVvyYVvyy

Spherical-polar Parametrization: F(r) =r/r*

r =a(sin 6 cos ¢, sin 0 sin ¢, cos 0)

Parameter domain: D = {0 x ¢| 6 € [0,7/2], ¢ € [0,27]}

To = Or/90 = a(cos 0 cos ¢, cos O sin ¢, — sin 0)

Ty = 0r/0¢ = a(—sinOsin ¢, sin 6 cos ¢, 0)

N =Ty x Ty = a®sin 6 (sin § cos ¢, sin O sin ¢, cos )

JACOBIAN: |N| = [Ty x Ty| = a%sin

FLUX: On the hemispherical surface S, r = a, N =% and N = (a*sin §)¢

/ [F [(6,6)] - N]s d6 do

7/ <g> -#(a%sin0) do do

/2 27
/ sin 6 df d¢ = 2m.
0

0

Net Flux = //F(r) -Nds
S



Volume Integrals
Definition
A volume integral is simply a 3D definitie integral or TRIPLE INTEGRAL of a
continuous scalar field f(x,y, z), or a vector field A(x,y, z), defined over a
certain region of space VCR?:

» Differential volume in Cartesian System : dV = dz dy dx

x=b | y=g2(x) z=f(x,y)

Iscatar = // f(r)dVZ/ / / f(x,y,z)dz | dy| dx

=a  |y=g1(x) z=f1(x,y)

x=b | y=g2(x) z=f(x,y)

Wector = ///A(r)dV:/ / / A(x,y,z)dz | dy| dx
v x

=a  |y=g1(x) z=f(x,y)




Volume Integrals
Definition
A volume integral is simply a 3D definitie integral or TRIPLE INTEGRAL of a
continuous scalar field f(x,y, z), or a vector field A(x,y, z), defined over a
certain region of space VCR?:

» Differential volume in Cartesian System : dV = dz dy dx

x=b | y=g2(x) z=f(x,y)

Iscatar = // f(r)dVZ/ / / f(x,y,z)dz | dy| dx

=a  |y=g1(x) z=f1(x,y)

x=b | y=g2(x) z=f(x,y)

Wector = ///A(r)dV:/ / / A(x,y,z)dz | dy| dx
v x

=a  |y=g1(x) z=f(x,y)

> Differential volume with 3D Parametrization, r = r(u, v, w) with
(u,v,w) € D C R%:
dV =T, (T, x Tu)| dudv dw

> The magnification/scale factor J = |T, - (T, x T.)| is the JACOBIAN.



Volume Integrals in Cartesian System

Example
Determine the volume integral of ¢(x,y,z) = 45x°y, over the closed region V
bounded by the co-ordinate planes x =0, y =0, z =0, and the plane
4x 42y +z=28.
» We choose to project the regionV onto the xy-plane, i.e., area R bounded
by x-axis, y-axis and the line 4x 4+ 2y = 8.

z




» Here, it is convenient to first perform the z-integration, and then the
double integral over the projected region R in the xy-plane.

» Limits of the integration are:
z:fl(X,y):O ’ z:ﬁ(X’Y):8*4X72y7
y=a()=0 , y=gx)=4-2x
x=0 s x =2



» Here, it is convenient to first perform the z-integration, and then the
double integral over the projected region R in the xy-plane.

» Limits of the integration are:

z:fl(X’y):O ’ z:ﬁ(X’Y):8*4X72y7
y=g(x)=0 , y=g(x)=4-2x
x=0 s x =2

/// 45x2y dx dy dz

z=8—4x—2y

%
// / dz | 45x%y dx dy
R

z=0

> Volume Integral:

[// o(x,y,z)dV



» Here, it is convenient to first perform the z-integration, and then the
double integral over the projected region R in the xy-plane.
» Limits of the integration are:

z:fl(X’y):O ’ z:ﬁ(X’Y):8*4X72y7
y=g(x)=0 , y=g(x)=4-2x
x=0 s x =2

/// 45x%y dx dy dz

» Volume Integral:

[// o(x,y,z)dV

\4
z=8—4x—2y
B // / dz | 45x°y dx dy
R z=0
x=2 y=4—2x

45/X2 / y(8 —4x —2y)dy| dx

x=0 y=0



» Here, it is convenient to first perform the z-integration, and then the
double integral over the projected region R in the xy-plane.
» Limits of the integration are:

z:fl(X’y):O ’ z:ﬁ(X’Y):8*4X72y7

y:g1(X):0 R y:gz(x):4—2x’
x=0 , x=2

> Volume Integral:

// o(x,y,z)dV = ///45x2ydxdydz
%

\4
z=8—4x—2y
= // / dz | 45x%y dx dy
R z=0
x=2 y=4—-2x
= 45/ x* / y(8 —4x —2y)dy| dx
x=0 y=0
x=2

X2 3
= 45/ T (4~ 20)7dx =128

x=0
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