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Fundamental Theorem of ordinary Calculus

This theorem is a link between the concept of a derivative of a function with
the concept of a function’s integral. In some sense, this theorem says,
integration is inverse process of differentiation.

Theorem
f f(x) is a differentiable function of one variable x in the closed interval [a, b
and G(x) = f'(x), then

’ G(x) dx = (A gy = f(b) — f(a).
/, . \Udx

In other words, the integral of a derivative over some interval is given by the
value of the function at the end/boundary points.




1st Fundamental Theorem for Gradients

Theorem

f ¢ is a differentiable scalar field with continuous gradient F = V¢ in R® an
A and B are any two points in this 3D space, then the total change in ¢ in
going from A and B is

'/.F(")'drz.//;BVO‘.dr: '//;Bd@:gb(B)_@(A)

C

over any smooth path C joining A and B.
Note: Here we used the CHAIN RULE:

do(x,y,z) = (%) dx + <g¢> dy + (gqb) dz=V¢-dr

In other words, the integral of the gradiant of a function over some interval is
given by the value of the function at the bounderies.
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Theorem

f ¢ is a differentiable scalar field with continuous gradient F = V¢ in R® an
A and B are any two points in this 3D space, then the total change in ¢ in
going from A and B is
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over any smooth path C joining A and B.
Note: Here we used the CHAIN RULE:

do(x,y,z) = (%) dx + <g¢> dy + (gqb) dz=V¢-dr

In other words, the integral of the gradiant of a function over some interval is
given by the value of the function at the bounderies.

Corollary
(1) ff V¢ - dr is independent of path C .

Corollary
(2) ¢ V¢ -dr =0, for EVERY closed path (. end points are identical.)



2nd Fundamental Theorem for Gradients

Theorem
et F be a continuous vector field over R? such that its line integral betwee

any two points in space is independent of the path. Also, let ¢ be a scalar field

over R® such that

°r
o) = [ R o
Ja
where a = (ax, ay, a;) is some fixed reference point in the 3D space. Then it

llows that V¢ = F.




2nd Fundamental Theorem for Gradients

Theorem
et F be a continuous vector field over R? such that its line integral betwee

any two points in space is independent of the path. Also, let ¢ be a scalar field

over R® such that

o) = [ Fw)-

where a = (ax, ay, a;) is some fixed reference point in the 3D space. Then it

llows that V¢ = F.

Corollary
(1) If § F-dr =0 for EVERY closed path, then V¢ = F. The field F is then

said to be CONSERVATIVE, while the field ¢ is the SCALAR POTENTIAL.



2nd Fundamental Theorem for Gradients

Theorem

et F be a continuous vector field over R? such that its line integral betwee
any two points in space is independent of the path. Also, let ¢ be a scalar field
over R? such that

o) = [ Fw)-

where a = (ax, ay, a;) is some fixed reference point in the 3D space. Then it
llows that V¢ = F.

Corollary

(1) If § F-dr =0 for EVERY closed path, then V¢ = F. The field F is then
said to be CONSERVATIVE, while the field ¢ is the SCALAR POTENTIAL.

Corollary
(2) Since V¢ = F, it must be that V x F =V x (V¢) = 0.



Fundamental Theorem for Divergence

Theorem
auss’ Theorem: Let V be a closed bounded region in R® whose boundar
is the smooth or piecewise smooth closed surface S with Nous being the unit
outward normal. If F is a vector function with continuous partial derivatives in
V, then the volume integral of its divergence over V is equal to the surface
integral of the outer normal component of F over the bounding surface S, i.e.,

/V// (V-F)dv :Z[]ﬁ F-NouwdS.
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Theorem

auss’ Theorem: Let V be a closed bounded region in R® whose boundar

is the smooth or piecewise smooth closed surface S with Nous being the unit

outward normal. If F is a vector function with continuous partial derivatives in

V, then the volume integral of its divergence over V is equal to the surface

integral of the outer normal component of F over the bounding surface S, i.e.,

/// F)dv = Z[]ﬁ F- Ny dS.

Corollary

(1) IfgﬁS F - dS = 0 for EVERY closed surface, then V - F =0 IDENTICALLY,
in which case F is SOLENOIDAL.

Corollary

(2) If there exists a vector field A, such that F = VXA, then the identity
V-F=V-(V xA)=0 implies ¢f F-dS =0 for EVERY closed surface in
which case A is termed as the VECTOR POTENTIAL of the field F.

Corollaries (1) & (2): For every SOLENOIDAL vector field there exists a
VECTOR POTENTIAL and vice versa.




Verification of Gauss’ Theorem (Simple Example)

Example

Let V = xi + yj+ zk =r and S be the surface of the sphere,
x2 +y2 + 22 = 22, enclosing the region V. Verify Gauss’ Theorem.
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Verification of Gauss’ Theorem (Simple Example)

Example

Let V = xi + yj+ zk =r and S be the surface of the sphere,
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Then,
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Verification of Gauss’ Theorem (Simple Example)

Example

Let V = xi + yj+ zk =r and S be the surface of the sphere,
x2 +y2 + 22 = 22, enclosing the region V. Verify Gauss’ Theorem.

» Outward unit normal on S: Define F(x,y,z) = x> + y* + 2> — a> = 0.
Then,

N_(VF) | 2(xi + yi + zk)
\IVFl)s VA(x2 4+ y? + z2)

(V~N)sd5:(r-?)5 dS = adS

Closed Surface Integral:

# V- fds = a# dS = a(4ra?) = 4na®

S S

. x7+yj+z|2 _r

= =t
a a

S

\ 2 /

v

VV=Zx)+ L) +5%(z) =3
Volume Integral:

// V-Vdv:3///dv:3(%7ra3) = 4na’
v Vv

Hence, Gauss' Theorem is verified.

v

v



Fundamental Theorem For Curl

Theorem
Stokes’ Theorem: Let S be a smooth orientable (i.e., two sided) open surface
in R® bounded by simple (i.e., nonintersecting), smooth or piecewise smooth
closed curve I'. IfF is a continuously differentiable vector field, then the surface
integral of the normal component of its curl over the surface S is equal to the
circulation of F about [, i.e.,

Z/(VxF)-NdS—der,

where for the surface S the direction of unit normal vector N is determined by
the right hand rule ( traversing ' in the positive direction.)




Fundamental Theorem for Curl (contd.)

Corollary

(1) The integral [[ (V x F)-dS is independent of the geometry of the bounded
open surface S, and depends ONLY on the nature of boundary curve I'.



Fundamental Theorem for Curl (contd.)

Corollary

(1) The integral [[ (V x F)-dS is independent of the geometry of the bounded
open surface S, and depends ONLY on the nature of boundary curve I'.
Corollary

(2) For EVERY closed surface S, ¢p (V x F)-dS =0 IDENTICALLY, since for
ALL closed surfaces there are no boundary curves.




Fundamental Theorem for Curl (contd.)

Corollary

(1) The integral [[ (V x F)-dS is independent of the geometry of the bounded
open surface S, and depends ONLY on the nature of boundary curve I'.

Corollary

(2) For EVERY closed surface S, ¢p (V x F)-dS =0 IDENTICALLY, since for
ALL closed surfaces there are no boundary curves.

Corollary

(3) If § F-dr =0 for EVERY closed loop, then V x F =0 IDENTICALLY, in
which case F is IRROTATIONAL.



Verification of Stokes’ Theorem (Simple Example)
Example
Let F = (2xz + 3y?)] + 4yzk and S be the square in yz-plane, i.e., x = 0, with
0 <(y, z) < 1. Verify Stokes' Theorem.




Verification of Stokes’ Theorem (Simple Example)
Example
Let F = (2xz + 3y?)] + 4yzk and S be the square in yz-plane, i.e., x = 0, with
0 <(y, z) < 1. Verify Stokes' Theorem.

v

dS = dydzi — + sign chosen by right-hand rule
V xF= (4z2 — 2x)i+ 27k

Surface Integral: Evaluate with x=00n S o

z=1 y=1
//(VXF)XZO-dS = 4/22dz/dy
S z=0 y=0

— 4/3

Contour Integral: Break it into 4 Line Integrals
$rscp (F-dr),_o = $upep (3v2dy + 4yz°dz)

v

v

A |
D B

v

/F~dr:1 , /F-dr:4/3,
A B
/F-dr:fl , /F-dr:O.
¢ D

QSABCD F - dr = 4/3. Hence, Stokes’ Theorem is
verified



General Curvilinear Co-ordinate System

» In 3D geometry, Curvilinear Co-ordinate Systems refer to a systems where
the co-ordinate lines are curved, unlike the familiar Rectangular Cartesian
Co-ordinate System (x,y, z).



General Curvilinear Co-ordinate System

» In 3D geometry, Curvilinear Co-ordinate Systems refer to a systems where
the co-ordinate lines are curved, unlike the familiar Rectangular Cartesian
Co-ordinate System (x,y, z).

» The curvilinear system could be orthogonal in which co-ordinate lines
always intersect at right angles (Spherical Polar, Cylindrical, Parabolic
Cylindical, Paraboloidal, Elliptic Cylindrical, Ellipsoidal, ...).

» Skew or non-orthogonal co-ordinate sytems are much complicated and
seldom useful in physical applications.
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General Curvilinear Co-ordinate System (contd.)

> Consider the co-ordinates of a point P in 3D space. The curvilinear
coordinates, say P(q1, g2, g3) may be derived from the Cartesian
coordinates P(x, y, z) though certain unique & invertible relations in terms
of smooth functions fi >3 and g1 23 called Co-ordinate Transformations:

a=h(xy,2) ; x=gl(q, q, q)=Ff",
@ =rh(xy,2) ; y=g(q g,q)="f"
as = f3(X7y7z) ; zZ= g3(q17q27 q3) = f;;l'



General Curvilinear Co-ordinate System (contd.)

> Consider the co-ordinates of a point P in 3D space. The curvilinear
coordinates, say P(q1, g2, g3) may be derived from the Cartesian
coordinates P(x, y, z) though certain unique & invertible relations in terms
of smooth functions fi >3 and g1 23 called Co-ordinate Transformations:

a=h(xy,2) ; x=gl(q, q, q)=Ff",
R="hxyz2z) i y=g(q g @) ="
Q3=f3(X~,y7Z) ; Z:g3(C]17CI27Q3)Ef;;1.

» The choice of the co-ordinate systems are fixed only for convenience
purpose, often utilizing the constraints/symmetries of applications.

» Cuboidial, Spherical and Cylindrical symmetries are very common in
Physical (electrodynamical) application, hence we shall deal with Spherical
Polar and Cylindical curvilinear co-ordinate systems and study their
transformations to and from Cartesian system.

LWARNING: All physics should be independent of the co-ordinate system used.)




Typical Orthogonal Curvilinear System in 3D (g1, ¢2,¢3); gi € R
Z4

X

» The curved surfaces q1 = ¢1 = const., > — ¢ = const., and
gs = c3 = const. are called co-ordinate surfaces. Any point P(q1, g2, g3) is
the intersection of the three such co-ordinate surfaces.
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» The orthogonal set of curves formed by the intersection of pairs of
co-ordinate surfaces are called co-ordinate lines/axes.



Typical Orthogonal Curvilinear System in 3D (g1, ¢2,¢3); gi € R
Z4

X

» The curved surfaces g1 = ¢ = const., , and
gs = c3 = const. are called co-ordinate surfaces. Any point P(q1, g2, g3) is
the intersection of the three such co-ordinate surfaces.

» The orthogonal set of curves formed by the intersection of pairs of
co-ordinate surfaces are called co-ordinate lines/axes.

» The unit vector (&,,8&2,8&3), unlike the Cartesian ones (,3,k), do not point
in specific directions in space. Their directions are instead specified by the
tangents to the co-ordinate lines at each point P(q1, g2, g3).



Unit vectors (&1, &2,83) as the Orthonormal Basis

Z

F=ai+yj+ zk= . z)
F=F(g1:9‘1:§3}
A(g,.9,.9;,) = Ajé) + Agéy + Azés
] ¥ a7
¥ A tangent vector to the q, curve at Pis 5
o =k & ; & — unitvector mngent to the coordinate curves '
i h; — scale factor

A unit tangent vector in the direction of q -axis § &= %/‘%‘
1

g1-81=1, é3-€a =1, €3 -é3=
i ar €1-6a=0, & -é3=0, é3-é3 =0,
I=,—;“'j!_¢~= - =1 - - - = - - - = =
r dr €1 X €2 = €3, €2 X €3 = €], €3 X €] = €3,
61Xé1=u. égxf’;?:[]. é;th’?u:ﬂ



Line (Arc), Area and Volume elements

T = ?_"(Q‘hii‘?: i}:i)

ar or or
dr = —d —dgy + —d

= h]tfqlél + hqu-gég + hgd(}gf‘lg 'J._

= dslél + ngég + dszés '-‘-.-." e
Arc elements : ds, = hydqy, dsy=hoedgs, dsz=hsdg;
Volume element : dV' = hyhyhgs dgidgadys

Area elements : d-‘:-l'l = hohgé, dgodgs
di_l.z = hihzéy dqdgs
das = hyhoés dqydg,

=] 5



Gradient Operator (V) for a scalar field ®(r) = ®(q1, g2, g3)

dO=Vd-dr

:(fl é1+f:é:+f3é3} '(%éld‘%"‘h:é: dg, +h e d‘?z:]

=h, fidg, +h, f,dg, + I, f;dg;

oD oD oD
d{D(%:{?};%j = qul + _dQ‘: +TdQ3

0q, dq, oq,

flszE', 2=i£= nd  f,=
h Gq, h, &g,

h Gg, h,Cq, h ég h, &4,




Divergence (V-), Curl (Vx), and Laplacian (V?) Operators

L. 1 |e 0 0
VoA = —(4hh)+ @(Azhlhs)J’@(A?hlhﬂ)

hl él
1 S R;
dq, dq, Og,

Al hl AZ hl AS h3

oo 1| 0 [% 32}1(’% @}3{% @H

=h1h2h3 l_?zl h 0q, ) cu,\ h, dq,) Cu\ h, Oq,

h2 e, h3 e.
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