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Fundamental Theorem of ordinary Calculus

This theorem is a link between the concept of a derivative of a function with
the concept of a function's integral. In some sense, this theorem says,
integration is inverse process of di�erentiation.

Theorem�

�

�

�

If f (x) is a di�erentiable function of one variable x in the closed interval [a, b]
and G(x) = f ′(x), then

ˆ b

a

G(x) dx =

ˆ b

a

(
df (x)

dx

)
dx = f (b)− f (a).

In other words, the integral of a derivative over some interval is given by the
value of the function at the end/boundary points.



1st Fundamental Theorem for Gradients

Theorem'
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If φ is a di�erentiable scalar �eld with continuous gradient F = ∇φ in R3 and
A and B are any two points in this 3D space, then the total change in φ in
going from A and B is

ˆ

C

F(r) · dr =
ˆ
B

A

∇φ · dr =
ˆ
B

A

dφ = φ(B)− φ(A)

over any smooth path C joining A and B.

Note: Here we used the CHAIN RULE:

dφ(x , y , z) =

(
∂φ

∂x

)
dx +

(
∂φ

∂y

)
dy +

(
∂φ

∂z

)
dz = ∇φ · dr

In other words, the integral of the gradiant of a function over some interval is
given by the value of the function at the bounderies.

Corollary

(1)
´
B

A
∇φ · dr is independent of path C .

Corollary

(2)
¸
∇φ · dr = 0, for EVERY closed path ( ∵ end points are identical.)
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2nd Fundamental Theorem for Gradients
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Let F be a continuous vector �eld over R3 such that its line integral between
any two points in space is independent of the path. Also, let φ be a scalar �eld
over R3 such that

φ(r) =

ˆ
r

a

F(r′) · dr′

where a = (ax , ay , az) is some �xed reference point in the 3D space. Then it
follows that ∇φ = F.

Corollary

(1) If
¸
F · dr = 0 for EVERY closed path, then ∇φ = F. The �eld F is then

said to be CONSERVATIVE, while the �eld φ is the SCALAR POTENTIAL.

Corollary

(2) Since ∇φ = F, it must be that ∇× F = ∇× (∇φ) = 0.
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Fundamental Theorem for Divergence
Theorem'
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Gauss' Theorem: Let V be a closed bounded region in R3 whose boundary
is the smooth or piecewise smooth closed surface S with N̂out being the unit
outward normal. If F is a vector function with continuous partial derivatives in
V, then the volume integral of its divergence over V is equal to the surface
integral of the outer normal component of F over the bounding surface S , i.e.,

˚

V

(∇ · F) dv =

‹

S

F · N̂outdS .

Corollary

(1) If
‚

F · dS = 0 for EVERY closed surface, then ∇ · F = 0 IDENTICALLY,
in which case F is SOLENOIDAL.

Corollary

(2) If there exists a vector �eld A, such that F = ∇×A, then the identity
∇ · F = ∇ · (∇× A) = 0 implies

‚
F · dS = 0 for EVERY closed surface in

which case A is termed as the VECTOR POTENTIAL of the �eld F.�



�
	Corollaries (1) & (2): For every SOLENOIDAL vector �eld there exists a

VECTOR POTENTIAL and vice versa.
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Veri�cation of Gauss' Theorem (Simple Example)

Example

Let V = x̂ i+ y ĵ+ z k̂ ≡ r and S be the surface of the sphere,
x2 + y2 + z2 = a2, enclosing the region V . Verify Gauss' Theorem.

I Outward unit normal on S : De�ne F (x , y , z) = x2 + y2 + z2 − a2 = 0.
Then,

N̂ =

(
∇F
|∇F |

)
S

=

[
2(x̂ i+ y ĵ+ z k̂)√
4(x2 + y2 + z2)

]
S

=
x̂ i+ y ĵ+ z k̂

a
=

r

a
= r̂

I
(
V · N̂

)
S
dS = (r · r̂)S dS = a dS

I Closed Surface Integral:‹

S

V · N̂dS = a

‹

S

dS = a(4πa2) = 4πa3

I ∇ · V = ∂
∂x

(x) + ∂
∂y

(y) + ∂
∂z
(z) = 3

I Volume Integral:˚

V

∇ · Vdv = 3

˚

V

dv = 3(
4

3
πa3) = 4πa3

I Hence, Gauss' Theorem is veri�ed.
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Fundamental Theorem For Curl

Theorem

Stokes' Theorem: Let S be a smooth orientable (i.e., two sided) open surface
in R3 bounded by simple (i.e., nonintersecting), smooth or piecewise smooth
closed curve Γ. If F is a continuously di�erentiable vector �eld, then the surface
integral of the normal component of its curl over the surface S is equal to the
circulation of F about Γ, i.e.,

¨

S

(∇× F) · N̂ dS =

˛

Γ

F · dr,

where for the surface S the direction of unit normal vector N̂ is determined by
the right hand rule ( traversing Γ in the positive direction.)



Fundamental Theorem for Curl (contd.)

Corollary

(1) The integral
˜

S
(∇× F) ·dS is independent of the geometry of the bounded

open surface S , and depends ONLY on the nature of boundary curve Γ.

Corollary

(2) For EVERY closed surface S ,
‚

(∇× F) · dS = 0 IDENTICALLY, since for
ALL closed surfaces there are no boundary curves.

Corollary

(3) If
¸
F · dr = 0 for EVERY closed loop, then ∇× F = 0 IDENTICALLY, in

which case F is IRROTATIONAL.
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Veri�cation of Stokes' Theorem (Simple Example)
Example

Let F = (2xz + 3y2)̂j+ 4yz2k̂ and S be the square in yz-plane, i.e., x = 0, with
0 ≤ (y , z) ≤ 1. Verify Stokes' Theorem.

y

z

A

B

C

D



Veri�cation of Stokes' Theorem (Simple Example)
Example

Let F = (2xz + 3y2)̂j+ 4yz2k̂ and S be the square in yz-plane, i.e., x = 0, with
0 ≤ (y , z) ≤ 1. Verify Stokes' Theorem.

I dS = dydz î → + sign chosen by right-hand rule

I ∇× F = (4z2 − 2x )̂i+ 2z k̂

I Surface Integral: Evaluate with x = 0 on S

¨

S

(∇× F)x=0 · dS = 4

z=1ˆ

z=0

z2dz

y=1ˆ

y=0

dy

= 4/3

I Contour Integral: Break it into 4 Line Integrals¸
ABCD

(F · dr)x=0 =
¸
ABCD

(
3y2dy + 4yz2dz

)
ˆ
A

F · dr = 1 ,

ˆ
B

F · dr = 4/3,

ˆ
C

F · dr = −1 ,

ˆ
D

F · dr = 0.

I
¸
ABCD

F · dr = 4/3. Hence, Stokes' Theorem is
veri�ed

y

z

A

B

C

D



General Curvilinear Co-ordinate System

I In 3D geometry, Curvilinear Co-ordinate Systems refer to a systems where
the co-ordinate lines are curved, unlike the familiar Rectangular Cartesian
Co-ordinate System (x , y , z).

I The curvilinear system could be orthogonal in which co-ordinate lines
always intersect at right angles (Spherical Polar, Cylindrical, Parabolic
Cylindical, Paraboloidal, Elliptic Cylindrical, Ellipsoidal, ...).

I Skew or non-orthogonal co-ordinate sytems are much complicated and
seldom useful in physical applications.
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General Curvilinear Co-ordinate System (contd.)

I Consider the co-ordinates of a point P in 3D space. The curvilinear
coordinates, say P(q1, q2, q3) may be derived from the Cartesian
coordinates P(x , y , z) though certain unique & invertible relations in terms
of smooth functions f1,2,3 and g1,2,3 called Co-ordinate Transformations:

q1 = f1(x , y , z) ; x = g1(q1, q2, q3) ≡ f −11 ,

q2 = f2(x , y , z) ; y = g2(q1, q2, q3) ≡ f −12 ,

q3 = f3(x , y , z) ; z = g3(q1, q2, q3) ≡ f −13 .

I The choice of the co-ordinate systems are �xed only for convenience
purpose, often utilizing the constraints/symmetries of applications.

I Cuboidial, Spherical and Cylindrical symmetries are very common in
Physical (electrodynamical) application, hence we shall deal with Spherical
Polar and Cylindical curvilinear co-ordinate systems and study their
transformations to and from Cartesian system.�� ��WARNING: All physics should be independent of the co-ordinate system used.
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Typical Orthogonal Curvilinear System in 3D (q1, q2, q3); qi ∈ R

I The curved surfaces q1 = c1 = const., q2 = c2 = const., and
q3 = c3 = const. are called co-ordinate surfaces. Any point P(q1, q2, q3) is
the intersection of the three such co-ordinate surfaces.

I The orthogonal set of curves formed by the intersection of pairs of
co-ordinate surfaces are called co-ordinate lines/axes.

I The unit vector (̂e1, ê2, ê3), unlike the Cartesian ones (̂i, ĵ, k̂), do not point
in speci�c directions in space. Their directions are instead speci�ed by the
tangents to the co-ordinate lines at each point P(q1, q2, q3).
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in speci�c directions in space. Their directions are instead speci�ed by the
tangents to the co-ordinate lines at each point P(q1, q2, q3).



Typical Orthogonal Curvilinear System in 3D (q1, q2, q3); qi ∈ R

I The curved surfaces q1 = c1 = const., q2 = c2 = const., and
q3 = c3 = const. are called co-ordinate surfaces. Any point P(q1, q2, q3) is
the intersection of the three such co-ordinate surfaces.

I The orthogonal set of curves formed by the intersection of pairs of
co-ordinate surfaces are called co-ordinate lines/axes.
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Unit vectors (ê1, ê2, ê3) as the Orthonormal Basis



Line (Arc), Area and Volume elements



Gradient Operator (∇) for a scalar �eld Φ(r) ≡ Φ(q1, q2, q3)



Divergence (∇·), Curl (∇×), and Laplacian (∇2) Operators
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