Physics II (PH 102) Electromagnetism (Lecture 4)

Udit Raha

Indian Institute of Technology Guwahati

Jan 2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 ▶ 이익 안

Fundamental Theorem of ordinary Calculus

This theorem is a link between the concept of a derivative of a function with the concept of a function's integral. In some sense, this theorem says, integration is inverse process of differentiation.

Theorem

✣

If <u>incorem</u>
If $f(x)$ is a differentiable function of one variable x in the closed interval $[a,b]$ and $G(x) = f'(x)$, then

$$
\int_a^b G(x) dx = \int_a^b \left(\frac{df(x)}{dx} \right) dx = f(b) - f(a).
$$

In other words, the integral of a derivative over some interval is given by the value of the function at the end/boundary points.

KORKA SERKER STRACK

1st Fundamental Theorem for Gradients

Theorem

Theorem
If ϕ is a differentiable scalar field with continuous gradient $\mathsf{F} = \nabla \phi$ in \mathbb{R}^3 and A and B are any two points in this 3D space, then the total change in ϕ in going from A and B is

$$
\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{A}^{B} \nabla \phi \cdot d\mathbf{r} = \int_{A}^{B} d\phi = \phi(B) - \phi(A)
$$

Note: Here we used the CHAIN RULE: over any smooth path \boldsymbol{C} joining A and B .

$$
d\phi(x,y,z) = \left(\frac{\partial\phi}{\partial x}\right)dx + \left(\frac{\partial\phi}{\partial y}\right)dy + \left(\frac{\partial\phi}{\partial z}\right)dz = \nabla\phi \cdot d\mathbf{r}
$$

In other words, the integral of the gradiant of a function over some interval is given by the value of the function at the bounderies.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

1st Fundamental Theorem for Gradients

Theorem

Theorem
If ϕ is a differentiable scalar field with continuous gradient $\mathsf{F} = \nabla \phi$ in \mathbb{R}^3 and A and B are any two points in this 3D space, then the total change in ϕ in going from A and B is

$$
\int_{C} \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{A}^{B} \nabla \phi \cdot d\mathbf{r} = \int_{A}^{B} d\phi = \phi(B) - \phi(A)
$$

Note: Here we used the CHAIN RULE: over any smooth path C joining A and B .

$$
d\phi(x,y,z) = \left(\frac{\partial\phi}{\partial x}\right)dx + \left(\frac{\partial\phi}{\partial y}\right)dy + \left(\frac{\partial\phi}{\partial z}\right)dz = \nabla\phi \cdot d\mathbf{r}
$$

In other words, the integral of the gradiant of a function over some interval is given by the value of the function at the bounderies.

モニー・モン イヨン イヨー

 2990

Corollary (1) $\int_A^B \nabla \phi \cdot d\mathbf{r}$ is independent of path C .

1st Fundamental Theorem for Gradients

Theorem

Theorem
If ϕ is a differentiable scalar field with continuous gradient $\mathsf{F} = \nabla \phi$ in \mathbb{R}^3 and A and B are any two points in this 3D space, then the total change in ϕ in going from A and B is

$$
\int_{C} \mathsf{F}(\mathbf{r}) \cdot d\mathbf{r} = \int_{A}^{B} \nabla \phi \cdot d\mathbf{r} = \int_{A}^{B} d\phi = \phi(B) - \phi(A)
$$

Note: Here we used the CHAIN RULE: over any smooth path \boldsymbol{C} joining A and B .

$$
d\phi(x,y,z) = \left(\frac{\partial\phi}{\partial x}\right)dx + \left(\frac{\partial\phi}{\partial y}\right)dy + \left(\frac{\partial\phi}{\partial z}\right)dz = \nabla\phi \cdot d\mathbf{r}
$$

In other words, the integral of the gradiant of a function over some interval is given by the value of the function at the bounderies.

Corollary (1) $\int_A^B \nabla \phi \cdot d\mathbf{r}$ is independent of path C .

Corollary

(2) $\oint \nabla \phi \cdot d\mathbf{r} = 0$, for EVERY closed path (∵ end points are identical.) LED KARD KID KID DA GRA

2nd Fundamental Theorem for Gradients

Theorem

Theorem
Let **F** be a continuous vector field over \mathbb{R}^3 such that its line integral between any two points in space is independent of the path. Also, let ϕ be a scalar field over \mathbb{R}^3 such that

 $\phi(\mathbf{r}) = \int_{\mathbf{a}}^{\mathbf{r}} \mathsf{F}(\mathbf{r}') \cdot d\mathbf{r}'$

 $\overline{}$ where $\mathbf{a} = (a_x, a_y, a_z)$ is some fixed reference point in the 3D space. Then it follows that $\nabla \phi = \textbf{F}$.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

2nd Fundamental Theorem for Gradients

Theorem

Theorem
Let **F** be a continuous vector field over \mathbb{R}^3 such that its line integral between any two points in space is independent of the path. Also, let ϕ be a scalar field over \mathbb{R}^3 such that

 $\phi(\mathbf{r}) = \int_{\mathbf{a}}^{\mathbf{r}} \mathsf{F}(\mathbf{r}') \cdot d\mathbf{r}'$

 $\overline{}$ where $\mathbf{a} = (a_x, a_y, a_z)$ is some fixed reference point in the 3D space. Then it follows that $\nabla \phi = \textbf{F}$.

Corollary

(1) If $\oint \mathbf{F} \cdot d\mathbf{r} = 0$ for EVERY closed path, then $\nabla \phi = \mathbf{F}$. The field \mathbf{F} is then said to be CONSERVATIVE, while the field ϕ is the SCALAR POTENTIAL.

モニー・モン イヨン イヨー

 QQ

2nd Fundamental Theorem for Gradients

Theorem

Theorem
Let **F** be a continuous vector field over \mathbb{R}^3 such that its line integral between any two points in space is independent of the path. Also, let ϕ be a scalar field over \mathbb{R}^3 such that

 $\phi(\mathbf{r}) = \int_{\mathbf{a}}^{\mathbf{r}} \mathsf{F}(\mathbf{r}') \cdot d\mathbf{r}'$

 $\overline{}$ where $\mathbf{a} = (a_x, a_y, a_z)$ is some fixed reference point in the 3D space. Then it follows that $\nabla \phi = \textbf{F}$.

Corollary

(1) If $\oint \mathbf{F} \cdot d\mathbf{r} = 0$ for EVERY closed path, then $\nabla \phi = \mathbf{F}$. The field \mathbf{F} is then said to be CONSERVATIVE, while the field ϕ is the SCALAR POTENTIAL.

KORK STRAIN A STRAIN A STRAIN

Corollary

(2) Since $\nabla \phi = \mathbf{F}$, it must be that $\nabla \times \mathbf{F} = \nabla \times (\nabla \phi) = 0$.

Fundamental Theorem for Divergence

Theorem

✫

 $\sqrt{\mathcal{G}}$ auss' Theorem: Let V be a closed bounded region in \mathbb{R}^3 whose boundary is the smooth or piecewise smooth closed surface S with \hat{N}_{out} being the unit outward normal. If F is a vector function with continuous partial derivatives in V , then the volume integral of its divergence over V is equal to the surface integral of the outer normal component of F over the bounding surface S , i.e.,

$$
\iiint\limits_V (\nabla \cdot \mathbf{F}) \, d\mathsf{v} = \oiint\limits_S \mathbf{F} \cdot \hat{\mathsf{N}}_{\text{out}} dS.
$$

イロト イ部 トイ君 トイ君 トー

Fundamental Theorem for Divergence

Theorem

 $\sqrt{\mathcal{G}}$ auss' Theorem: Let V be a closed bounded region in \mathbb{R}^3 whose boundary is the smooth or piecewise smooth closed surface S with \hat{N}_{out} being the unit outward normal. If F is a vector function with continuous partial derivatives in V, then the volume integral of its divergence over V is equal to the surface integral of the outer normal component of F over the bounding surface S , i.e.,

$$
\iiint\limits_V (\nabla \cdot \mathbf{F}) \, d\mathsf{v} = \oiint\limits_S \mathbf{F} \cdot \hat{\mathsf{N}}_{\text{out}} dS.
$$

✫ **Corollary**

(1) If \bigoplus **F** \cdot d**S** $=$ 0 for EVERY closed surface, then $\nabla \cdot$ **F** $=$ 0 IDENTICALLY, in which case F is SOLENOIDAL.

モニー・モン イヨン イヨー

 QQ

Fundamental Theorem for Divergence

Theorem

 $\sqrt{\mathcal{G}}$ auss' Theorem: Let V be a closed bounded region in \mathbb{R}^3 whose boundary is the smooth or piecewise smooth closed surface S with \hat{N}_{out} being the unit outward normal. If F is a vector function with continuous partial derivatives in V, then the volume integral of its divergence over V is equal to the surface integral of the outer normal component of F over the bounding surface S , i.e.,

$$
\iiint\limits_V (\nabla \cdot \mathbf{F}) \, d\mathsf{v} = \oiint\limits_S \mathbf{F} \cdot \hat{\mathsf{N}}_{\text{out}} dS.
$$

✫ **Corollary**

(1) If \bigoplus **F** \cdot d**S** $=$ 0 for EVERY closed surface, then $\nabla \cdot$ **F** $=$ 0 IDENTICALLY, in which case F is SOLENOIDAL.

Corollary

☛

 \searrow

(2) If there exists a vector field **A**, such that $F = \nabla \times A$, then the identity $\nabla \cdot {\sf F} = \nabla \cdot (\nabla \times {\sf A}) = 0$ implies $\bigoplus {\sf F} \cdot d{\sf S} = 0$ for EVERY closed surface in which case A is termed as the VECTOR POTENTIAL of the field F .

Corollaries (1) $\&$ (2): For every SOLENOIDAL vector field there exists a VECTOR POTENTIAL and vic[e ve](#page-9-0)[rsa](#page-11-0)[.](#page-7-0)

✟

Example Let $\mathbf{V} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \equiv \mathbf{r}$ and S be the surface of the sphere, $x^2 + y^2 + z^2 = a^2$, enclosing the region V . Verify Gauss' Theorem.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 수 있어요

Example

Let $\mathbf{V} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \equiv \mathbf{r}$ and S be the surface of the sphere, $x^2 + y^2 + z^2 = a^2$, enclosing the region V . Verify Gauss' Theorem.

► Outward unit normal on S: Define $F(x, y, z) = x^2 + y^2 + z^2 - a^2 = 0$. Then,

$$
\mathbf{\hat{N}} = \left(\frac{\nabla F}{|\nabla F|}\right)_{S} = \left[\frac{2(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}})}{\sqrt{4(x^{2} + y^{2} + z^{2})}}\right]_{S} = \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{a} = \frac{\mathbf{r}}{a} = \hat{\mathbf{r}}
$$

Example

Let $\mathbf{V} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \equiv \mathbf{r}$ and S be the surface of the sphere, $x^2 + y^2 + z^2 = a^2$, enclosing the region V . Verify Gauss' Theorem.

► Outward unit normal on S: Define $F(x, y, z) = x^2 + y^2 + z^2 - a^2 = 0$. Then,

$$
\hat{\mathsf{N}} = \left(\frac{\nabla F}{|\nabla F|}\right)_{S} = \left[\frac{2(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}})}{\sqrt{4(x^{2} + y^{2} + z^{2})}}\right]_{S} = \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{a} = \frac{\mathbf{r}}{a} = \hat{\mathsf{r}}
$$

$$
\blacktriangleright \left(\mathbf{V} \cdot \mathbf{\hat{N}}\right)_S dS = \left(\mathbf{r} \cdot \hat{\mathbf{r}}\right)_S dS = a dS
$$

Example

Let $\mathbf{V} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \equiv \mathbf{r}$ and S be the surface of the sphere, $x^2 + y^2 + z^2 = a^2$, enclosing the region V . Verify Gauss' Theorem.

► Outward unit normal on S: Define $F(x, y, z) = x^2 + y^2 + z^2 - a^2 = 0$. Then,

$$
\mathbf{\hat{N}} = \left(\frac{\nabla F}{|\nabla F|}\right)_S = \left[\frac{2(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}})}{\sqrt{4(x^2 + y^2 + z^2)}}\right]_S = \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{a} = \frac{\mathbf{r}}{a} = \hat{\mathbf{r}}
$$

$$
\blacktriangleright \left(\mathbf{V} \cdot \hat{\mathbf{N}}\right)_S dS = \left(\mathbf{r} \cdot \hat{\mathbf{r}}\right)_S dS = a dS
$$

▶ Closed Surface Integral:

$$
\oiint\limits_{S} \mathbf{V} \cdot \hat{\mathbf{N}} dS = a \oiint\limits_{S} dS = a(4\pi a^2) = 4\pi a^3
$$

Example

Let $\mathbf{V} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \equiv \mathbf{r}$ and S be the surface of the sphere, $x^2 + y^2 + z^2 = a^2$, enclosing the region V . Verify Gauss' Theorem.

► Outward unit normal on S: Define $F(x, y, z) = x^2 + y^2 + z^2 - a^2 = 0$. Then,

$$
\mathbf{\hat{N}} = \left(\frac{\nabla F}{|\nabla F|}\right)_S = \left[\frac{2(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}})}{\sqrt{4(x^2 + y^2 + z^2)}}\right]_S = \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{a} = \frac{\mathbf{r}}{a} = \hat{\mathbf{r}}
$$

$$
\blacktriangleright \left(\mathbf{V} \cdot \hat{\mathbf{N}}\right)_S dS = \left(\mathbf{r} \cdot \hat{\mathbf{r}}\right)_S dS = a dS
$$

▶ Closed Surface Integral:

$$
\oiint\limits_{S} \mathbf{V} \cdot \mathbf{\hat{N}} dS = a \oiint\limits_{S} dS = a(4\pi a^2) = 4\pi a^3
$$

$$
\blacktriangleright \nabla \cdot \mathbf{V} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 3
$$

Example

Let $\mathbf{V} = x \hat{\mathbf{i}} + y \hat{\mathbf{j}} + z \hat{\mathbf{k}} \equiv \mathbf{r}$ and S be the surface of the sphere, $x^2 + y^2 + z^2 = a^2$, enclosing the region V . Verify Gauss' Theorem.

► Outward unit normal on S: Define $F(x, y, z) = x^2 + y^2 + z^2 - a^2 = 0$. Then,

$$
\mathbf{\hat{N}} = \left(\frac{\nabla F}{|\nabla F|}\right)_S = \left[\frac{2(x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}})}{\sqrt{4(x^2 + y^2 + z^2)}}\right]_S = \frac{x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}}{a} = \frac{\mathbf{r}}{a} = \hat{\mathbf{r}}
$$

$$
\blacktriangleright \left(\mathbf{V} \cdot \hat{\mathbf{N}}\right)_S dS = \left(\mathbf{r} \cdot \hat{\mathbf{r}}\right)_S dS = a dS
$$

▶ Closed Surface Integral:

$$
\oiint\limits_{S} \mathbf{V} \cdot \mathbf{\hat{N}} dS = a \oiint\limits_{S} dS = a(4\pi a^2) = 4\pi a^3
$$

 $\blacktriangleright \nabla \cdot \mathbf{V} = \frac{\partial}{\partial x}(x) + \frac{\partial}{\partial y}(y) + \frac{\partial}{\partial z}(z) = 3$ ▶ Volume Integral:

$$
\iiint\limits_V \nabla \cdot \mathbf{V} d\mathbf{v} = 3 \iiint\limits_V d\mathbf{v} = 3(\frac{4}{3}\pi a^3) = 4\pi a^3
$$

KORKA BRADE KORA

 \blacktriangleright Hence, Gauss' Theorem is verified.

Fundamental Theorem For Curl

Theorem

Stokes' Theorem: Let S be a smooth orientable (i.e., two sided) open surface in \mathbb{R}^3 bounded by simple (i.e., nonintersecting), smooth or piecewise smooth closed curve Γ . If Γ is a continuously differentiable vector field, then the surface integral of the normal component of its curl over the surface S is equal to the circulation of F about Γ , i.e.,

$$
\iint (\nabla \times \mathsf{F}) \cdot \hat{\mathsf{N}} \, dS = \oint \mathsf{F} \cdot d\mathsf{r},
$$

where for the surface $\frac{s}{s}$ the direction of unit normal vector $\mathsf{\hat{N}}$ is determined by the right hand rule (traversing Γ in the positive direction.)

Fundamental Theorem for Curl (contd.)

Corollary

(1) The integral $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ is independent of the geometry of the bounded open surface S , and depends ONLY on the nature of boundary curve Γ .

KORKA SERKER ORA

Fundamental Theorem for Curl (contd.)

Corollary

(1) The integral $\iint_S (\nabla \times \mathbf{F}) \cdot d\mathbf{S}$ is independent of the geometry of the bounded open surface S , and depends ONLY on the nature of boundary curve Γ .

Corollary

(2) For EVERY closed surface S , $\bigoplus\limits_{}^{\sim}$ ($\nabla\times$ **F**) \cdot d**S** $=$ 0 IDENTICALLY, since for ALL closed surfaces there are no boundary curves.

KORK STRAIN A STRAIN A STRAIN

Fundamental Theorem for Curl (contd.)

Corollary

 (1) The integral $\iint_S (\nabla \times {\sf F}) \cdot d{\sf S}$ is independent of the geometry of the bounded $\sum_{i=1}^{N}$ and $\sum_{i=1}^{N}$ and $\sum_{i=1}^{N}$ on the nature of boundary curve Γ .

Corollary

(2) For EVERY closed surface S , $\bigoplus\limits_{}^{\sim}$ ($\nabla\times$ **F**) \cdot d**S** $=$ 0 IDENTICALLY, since for ALL closed surfaces there are no boundary curves.

Corollary

(3) If $\oint \mathbf{F} \cdot d\mathbf{r} = 0$ for EVERY closed loop, then $\nabla \times \mathbf{F} = 0$ IDENTICALLY, in which case **F** is **IRROTATIONAL**

Verification of Stokes' Theorem (Simple Example) **Example**

Let $\mathbf{F} = (2xz + 3y^2)\hat{\mathbf{j}} + 4yz^2\hat{\mathbf{k}}$ and \boldsymbol{S} be the square in yz-plane, i.e., $x = 0$, with $0 \leq (y, z) \leq 1$. Verify Stokes' Theorem.

KORK STRAIN A STRAIN A STRAIN

Verication of Stokes' Theorem (Simple Example) **Example**

Let $\mathbf{F} = (2xz + 3y^2)\hat{\mathbf{j}} + 4yz^2\hat{\mathbf{k}}$ and \boldsymbol{S} be the square in yz-plane, i.e., $x = 0$, with $0 \leq (y, z) \leq 1$. Verify Stokes' Theorem.

- \triangleright dS = dydzi \rightarrow + sign chosen by right-hand rule
- $\triangleright \triangledown \times \mathsf{F} = (4z^2 2x)\hat{\mathsf{i}} + 2z\hat{\mathsf{k}}$

Surface Integral: Evaluate with $x = 0$ on S

$$
\iint_{S} (\nabla \times \mathbf{F})_{x=0} \cdot d\mathbf{S} = 4 \int_{z=0}^{z=1} z^{2} dz \int_{y=0}^{y=1} dy
$$

$$
= 4/3
$$

▶ Contour Integral: Break it into 4 Line Integrals \oint_{ABCD} $(\mathbf{F} \cdot d\mathbf{r})_{x=0} = \oint_{ABCD} (3y^2 dy + 4yz^2 dz)$

$$
\int_{A} \mathbf{F} \cdot d\mathbf{r} = 1 \quad , \quad \int_{B} \mathbf{F} \cdot d\mathbf{r} = 4/3,
$$

$$
\int_{C} \mathbf{F} \cdot d\mathbf{r} = -1 \quad , \quad \int_{D} \mathbf{F} \cdot d\mathbf{r} = 0.
$$

$$
\oint_{ABCD} \mathbf{F} \cdot d\mathbf{r} = 4/3.
$$
 Hence, Stokes' Theorem is verified

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 QQ

General Curvilinear Co-ordinate System

In 3D geometry, Curvilinear Co-ordinate Systems refer to a systems where the co-ordinate lines are curved, unlike the familiar Rectangular Cartesian Co-ordinate System (x, y, z) .

General Curvilinear Co-ordinate System

- In 3D geometry, Curvilinear Co-ordinate Systems refer to a systems where the co-ordinate lines are curved, unlike the familiar Rectangular Cartesian Co -ordinate System (x, y, z) .
- The curvilinear system could be *orthogonal* in which co-ordinate lines always intersect at right angles (Spherical Polar, Cylindrical, Parabolic Cylindical, Paraboloidal, Elliptic Cylindrical, Ellipsoidal, ...).
- Skew or non-orthogonal co-ordinate sytems are much complicated and seldom useful in physical applications.

General Curvilinear Co-ordinate System (contd.)

Consider the co-ordinates of a point P in 3D space. The curvilinear coordinates, say $P(q_1, q_2, q_3)$ may be derived from the Cartesian coordinates $P(x, y, z)$ though certain unique & invertible relations in terms of smooth functions $f_{1,2,3}$ and $g_{1,2,3}$ called *Co-ordinate Transformations*:

$$
q_1 = f_1(x, y, z) \quad ; \quad x = g_1(q_1, q_2, q_3) \equiv f_1^{-1},
$$

\n
$$
q_2 = f_2(x, y, z) \quad ; \quad y = g_2(q_1, q_2, q_3) \equiv f_2^{-1},
$$

\n
$$
q_3 = f_3(x, y, z) \quad ; \quad z = g_3(q_1, q_2, q_3) \equiv f_3^{-1}.
$$

K ロ ▶ K 個 ▶ K 할 > K 할 > 1 할 > 1 이익어

General Curvilinear Co-ordinate System (contd.)

 \triangleright Consider the co-ordinates of a point P in 3D space. The curvilinear coordinates, say $P(q_1, q_2, q_3)$ may be derived from the Cartesian coordinates $P(x, y, z)$ though certain unique & invertible relations in terms of smooth functions $f_{1,2,3}$ and $g_{1,2,3}$ called *Co-ordinate Transformations*:

- \blacktriangleright The choice of the co-ordinate systems are fixed only for convenience purpose, often utilizing the constraints/symmetries of applications.
- \triangleright Cuboidial, Spherical and Cylindrical symmetries are very common in Physical (electrodynamical) application, hence we shall deal with Spherical Polar and Cylindical curvilinear co-ordinate systems and study their transformations to and from Cartesian system.

waRNING: All physics should be independent of the co-ordinate system used. ✝

 \mathbf{a} ✆

In The curved surfaces $q_1 = c_1 = const.$, $q_2 = c_2 = const.$, and $q_3 = c_3 = const.$ are called co-ordinate surfaces. Any point $P(q_1, q_2, q_3)$ is the intersection of the three such co-ordinate surfaces.

イロト イ押 トイヨ トイヨト

 2990

G.

In The curved surfaces $q_1 = c_1 = const.$, $q_2 = c_2 = const.$, and $q_3 = c_3 = \text{const.}$ are called co-ordinate surfaces. Any point $P(q_1, q_2, q_3)$ is the intersection of the three such co-ordinate surfaces.

 $A \equiv 1 + 4 \sqrt{10} + 4 \sqrt{10} + 4 \sqrt{10} + 4 \sqrt{10} + 1$

 $2Q$

In The orthogonal set of curves formed by the intersection of pairs of co-ordinate surfaces are called co-ordinate lines/axes.

Typical Orthogonal Curvilinear System in 3D (q_1, q_2, q_3) ; $q_i \in \mathbb{R}$

In The curved surfaces $q_1 = c_1 = const.$, $q_2 = c_2 = const.$, and $q_3 = c_3 = const.$ are called co-ordinate surfaces. Any point $P(q_1, q_2, q_3)$ is the intersection of the three such co-ordinate surfaces.

- \blacktriangleright The orthogonal set of curves formed by the intersection of pairs of co-ordinate surfaces are called co-ordinate lines/axes.
- The unit vector $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$, unlike the Cartesian ones $(\mathbf{i}, \mathbf{j}, \mathbf{k})$, do not point in specific directions in space. Their directions are instead specified by the tangents to the co-ordinate lines at each point $P(q_1, q_2, q_3)$.

Unit vectors $(\hat{\mathbf{e}}_1, \hat{\mathbf{e}}_2, \hat{\mathbf{e}}_3)$ as the Orthonormal Basis

イロメ イ部メ イ君メ イ君メー 君一 2990 Line (Arc), Area and Volume elements

$$
\vec{r} = \vec{r}(q_1, q_2, q_3)
$$
\n
$$
d\vec{r} = \frac{\partial \vec{r}}{\partial q_1} dq_1 + \frac{\partial \vec{r}}{\partial q_2} dq_2 + \frac{\partial \vec{r}}{\partial q_3} dq_3
$$
\n
$$
= h_1 dq_1 \hat{e}_1 + h_2 dq_2 \hat{e}_2 + h_3 dq_3 \hat{e}_3
$$
\n
$$
= ds_1 \hat{e}_1 + ds_2 \hat{e}_2 + ds_3 \hat{e}_3
$$

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Arc elements : $ds_1 = h_1 dq_1$, $ds_2 = h_2 dq_2$, $ds_3 = h_3 dq_3$

Volume element : $dV = h_1 h_2 h_3 dq_1 dq_2 dq_3$

Area elements :
$$
d\vec{a}_1 = h_2 h_3 \hat{e}_1 dq_2 dq_3
$$

\n $d\vec{a}_2 = h_1 h_3 \hat{e}_2 dq_1 dq_3$
\n $d\vec{a}_3 = h_1 h_2 \hat{e}_3 dq_1 dq_2$

Gradient Operator (∇) for a scalar field $\Phi(\mathbf{r}) \equiv \Phi(q_1, q_2, q_3)$

$$
d\Phi = \vec{\nabla}\Phi \cdot d\vec{r}
$$

\n
$$
= (f_1 \hat{e}_1 + f_2 \hat{e}_2 + f_3 \hat{e}_3) \cdot (h_1 \hat{e}_1 dq_1 + h_2 \hat{e}_2 dq_2 + h_3 \hat{e}_3 dq_3)
$$

\n
$$
= h_1 f_1 dq_1 + h_2 f_2 dq_2 + h_3 f_3 dq_3
$$

\n
$$
d\Phi(q_1, q_2, q_3) = \frac{\partial \Phi}{\partial q_1} dq_1 + \frac{\partial \Phi}{\partial q_2} dq_2 + \frac{\partial \Phi}{\partial q_3} dq_3
$$

\n
$$
f_1 = \frac{1}{h_1} \frac{\partial \Phi}{\partial q_1}, \quad f_2 = \frac{1}{h_2} \frac{\partial \Phi}{\partial q_2}, \quad \text{and} \quad f_3 = \frac{1}{h_3} \frac{\partial \Phi}{\partial q_3}
$$

\n
$$
\vec{\nabla}\Phi = \frac{\hat{e}_1}{h_1} \frac{\partial \Phi}{\partial q_1} + \frac{\hat{e}_2}{h_2} \frac{\partial \Phi}{\partial q_2} + \frac{\hat{e}_3}{h_3} \frac{\partial \Phi}{\partial q_3} \Rightarrow \quad \vec{\nabla} = \frac{\hat{e}_1}{h_1} \frac{\partial}{\partial q_1} + \frac{\hat{e}_2}{h_2} \frac{\partial}{\partial q_2} + \frac{\hat{e}_3}{h_3} \frac{\partial}{\partial q_3}
$$

K ロ X (日) X (日)

Divergence $(\nabla \cdot)$, Curl $(\nabla \times)$, and Laplacian (∇^2) Operators

$$
\vec{\nabla} \cdot \vec{A} = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial q_1} \left(A_1 h_2 h_3 \right) + \frac{\partial}{\partial q_2} \left(A_2 h_1 h_3 \right) + \frac{\partial}{\partial q_3} \left(A_3 h_1 h_2 \right) \right]
$$
\n
$$
\vec{\nabla} \times \vec{A} = \frac{1}{h_1 h_2 h_3} \begin{vmatrix} h_1 \hat{e}_1 & h_2 \hat{e}_2 & h_3 \hat{e}_3 \\ \frac{\partial}{\partial q_1} & \frac{\partial}{\partial q_2} & \frac{\partial}{\partial q_3} \\ A_1 h_1 & A_2 h_2 & A_3 h_3 \end{vmatrix}
$$
\n
$$
\vec{\nabla}^2 \Phi = \frac{1}{h_1 h_2 h_3} \left[\frac{\partial}{\partial u_1} \left(\frac{h_2 h_3}{h_1} \frac{\partial \Phi}{\partial q_1} \right) + \frac{\partial}{\partial u_2} \left(\frac{h_1 h_3}{h_2} \frac{\partial \Phi}{\partial q_2} \right) + \frac{\partial}{\partial u_3} \left(\frac{h_1 h_2}{h_3} \frac{\partial \Phi}{\partial q_3} \right) \right]
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할) 19 Q Q ·