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Spherical-Polar Co-ordinate System: Components

I Position vector of a point P :
r

I Cartesian coordinates:
(x , y , z)

I Spherical polar coordinates:
(r , θ, φ)

I Length of r:
r = |r| (Radial distance)

I Projection of r onto XY plane:

OQ

I Angle between z-axis and r:
θ (Polar angle/Zenith)

I Angle between x-axis and OQ:
φ (Azimuthal angle)



Spherical-Polar System: 3D Domain

Ranges for Cartesian co-ordinates: x , y , z ∈ (−∞,∞).

Ranges of Spherical polar co-ordinates:

I Radial co-ordinate (distance): r ∈ [0,∞),

I Zenith or Polar co-ordinate: θ ∈ [0, π]
I Azimuthal co-ordinate: φ ∈ [0, 2π)

Note:

I φ is unde�ned for points on z-axis

I θ and φ are both unde�ned at the origin
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Spherical-Polar System: Co-ordinate Transformations (Bijective Mappings)

r = r(x , y , z) =
√

x2 + y2 + z2

θ = θ(x , y , z) = tan−1
(√

x2 + y2

z

)
φ = φ(x , y , z) = tan−1

(y
x

)
.

x = x(r , θ, φ) = r sin θ cosφ

y = y(r , θ, φ) = r sin θ sinφ

z = z(r , θ, φ) = r cos θ



Spherical-Polar System: Co-ordinate Transformations (Bijective Mappings)
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√
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Spherical-Polar System: Constant Co-ordinate Surface

Three Co-ordinate Surfaces can be obtained by keeping one of the co-ordinates
�xed while varying the other two. A point P in 3D space is the intersection of
these co-ordinate surfaces.

I r -Constant Surface, θ ∈ [0, π], φ ∈ [0, 2π) → Sphere

I θ-Constant Surface, r ∈ [0,∞), φ ∈ [0, 2π) → Cone

I φ-Constant Surface, θ ∈ [0, π], r ∈ [0,∞) → Half Plane
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Spherical-Polar System: Constant r Surface

3 Coordinate Surfaces can be obtained by keeping one of the coordinates
constant while varying the other two.

r = constant yields a
spherical surface.

Let c = const. > 0.

r(c, θ, φ) = {(c, θ, φ) | θ ∈ [0, π], φ ∈ [0, 2π)}

which is a sphere of
radius c.

x
y

z



Spherical-Polar System: Constant θ Surface

3 Coordinate Surfaces can be obtained by keeping one of the coordinates
constant while varying the other two.

θ = constant yields a
conical surface.

Let α = const. > 0.

r(r , α, φ) = {(r , α, φ) | r ∈ [0,∞), φ ∈ [0, 2π)}

which is a cone of
angle α.

x

y

z



Spherical-Polar System: Constant φ Surface

3 Coordinate Surfaces can be obtained by keeping one of the coordinates
constant while varying the other two.

φ = constant yields a
planar surface.

Let κ = const. > 0.

r(r , θ, κ) = {(r , θ, κ) | θ ∈ [0, π], r ∈ [0,∞)}

which is a half plane
(only one side of the
z-axis) with azimuth
κ.

x

y

z



Spherical-Polar System: Intersection of Constant Surfaces

I A point P in 3D space is obtained as an intersection of the 3 const.
co-ordinate surfaces

I The intersection of any two co-ordinate surfaces yields a co-ordinate
line/axis

x

y

z



Spherical-Polar System: Typical Co-ordinate Curves

Keeping any two co-ordinates �xed and varying the third, we get a co-ordinate
curve/line. Let P (r0, θ0, φ0) be any point in 3D space.

I r -line: r ∈ [0,∞), (θ0, φ0) → �xed

r(r) = r (sin θ0 cosφ0, sin θ0 sinφ0, cos θ0)

I θ-curve: θ ∈ [0, π], (r0, φ0) → �xed

r(θ) = r0 (sin θ cosφ0, sin θ sinφ0, cos θ)

I φ-curve: φ ∈ [0, 2π), (r0, θ0) → �xed

r(φ) = r0 (sin θ0 cosφ, sin θ0 sinφ, cos θ0)

x
y

z



Spherical-Polar System: Unit Vectors & Scale Factors

Unit Tangent Vectors to co-ordinate curves at a given point r = r (r , θ, φ)

r(r , θ, φ) = r sin θ cos φ̂i + r sin θ sin φ̂j + r cos θk̂

These vectors are not �xed in space, but depend on angles (θ, φ)
(hr , hθ, hφ) are the Scale factors

er (θ, φ) =
∂r

∂r
/

∣∣∣∣ ∂r∂r
∣∣∣∣ =

∂r

∂r
/hr

= sin θ cos φ̂i + sin θ sin φ̂j + cos θk̂

hr = 1,

eθ(θ, φ) =
∂r

∂θ
/

∣∣∣∣ ∂r∂θ
∣∣∣∣ =

∂r

∂θ
/hθ

= cos θ cos φ̂i + cos θ sin φ̂j− sin θk̂

hθ = r ,

eφ(φ) =
∂r

∂φ
/

∣∣∣∣ ∂r∂φ
∣∣∣∣ =

∂r

∂φ
/hφ

= − sin φ̂i + cos φ̂j

hφ = r sin θ.

x
y

z



Spherical-Polar System: Orthonormal Basis Vectors

I Orthonormal system of unit vectors:

er · er = 1, eθ · eθ = 1, eφ · eφ = 1,

er · eθ = 0, eθ · eφ = 0, eφ · er = 0,

er × eθ = eφ, eθ × eφ = er , eφ × er = eθ

I Note: er → eθ → eφ are in cyclic order

I Cartesian unit vectors (̂i, ĵ, k̂) are constants in space and do not depend on
position, but spherical unit vectors especially depend on angles (θ, φ) :

∂er
∂r

= 0 ,
∂er
∂θ

= eθ ,
∂er
∂φ

= sin θeφ

∂eθ
∂r

= 0 ,
∂eθ
∂θ

= −er ,
∂eθ
∂φ

= cos θeφ

∂eφ
∂r

= 0 ,
∂eφ
∂θ

= 0 ,
∂eφ
∂φ

= − sin θer − cos θeθ
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Co-ordinate Transformations: Cartesian ⇐⇒ Spherical-Polar

Co-ordinate tranformations from Cartesian (̂i, ĵ, k̂) to spherical (er , eθ, eφ) unit
vectors:

Inverse transformations from spherical (er , eθ, eφ) to Cartesian (̂i, ĵ, k̂) unit
vectors:

Note:

I The above matrices are orthognal matrices where, MT = M−1

I The same tranformation rules as above are applicable for transforming the
components of a vector A(x , y , z) ≡ A(r , θ, φ), i.e.,

(Ax , Ay , Az)⇐⇒ (Ar , Aθ, Aφ)
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Spherical-Polar System: Line, Surface and Volume Elements



Spherical-Polar System: Line, Surface and Volume Elements (contd.)

Position vector to any point P(x , y , z) ≡ (r , θ, φ) is
−→
OP = r = r(r , θ, φ).

Arc/Line Elements:

dr = dr(r , θ, φ) =

(
∂r

∂r

)
dr +

(
∂r

∂θ

)
dθ +

(
∂r

∂φ

)
dφ

= (hrer ) dr + (hθeθ) dθ + (hφeφ) dφ

= 1er dr + r eθ dθ + r sin θ eφ dφ

≡ erdsr + eθdsθ + eφdsφ

dsr = dr , dsθ = rdθ, dsφ = r sin θdφ

Surface Elements:

Surface Shape Unit Normal Elemental Area dS

r = const. Sphere er ≡ r̂ (eθ × eφ) dsθdsφ = r2 sin θ dθ dφ er
θ = const. Cone eθ ≡ θ̂ (eφ × er ) dsrdsφ = r sin θ dr dφ eθ
φ = const. Half Plane eφ ≡ φ̂ (er × eθ) dsrdsθ = r dr dθ eφ

Volume Element: With Jacobian J = hrhθhφ = r2 sin θ

dV = dsrdsθdsφ = Jdr dθ dφ = r2 sin θ dr dθ dφ
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Di�erential Operators In Spherical Coordinates

Φ(r) be a di�erentiable scalar �eld, and A(r), a di�erentiable vector �eld, then

I Gradient:

∇Φ =
∂Φ

∂r
er +

1

r

∂Φ

∂θ
eθ +

1

r sin θ

∂Φ

∂φ
eφ

I Divergence:

∇ · A =
1

r2
∂

∂r

(
r2Ar

)
+

1

r sin θ

∂

∂θ
(Aθ sin θ) +

1

r sin θ

∂Aφ

∂φ

I Curl:

∇× A =
1

r sin θ

[
∂(Aφ sin θ)

∂θ
− ∂Aθ

∂φ

]
er

+
1

r

[
1

sin θ

∂Ar

∂φ
− ∂(rAφ)

∂r

]
eθ +

1

r

[
∂(rAθ)

∂r
− ∂Ar

∂θ

]
eφ

I Laplacian:

∇2Φ =
1

r2
∂

∂r

(
r2
∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2



Cylindrical Co-ordinates: Co-ordinate Surfaces & Axes



Cylindrical Co-ordinates: Unit Vectors & Scale Factors

Note: eρ → eφ → ez are in cyclic order



Cylindrical Co-ordinates: Unit Vectors

I Cartesian unit vectors are constants and do not depend on position, but
cylindrical unit vectors do:

∂eρ
∂ρ

= 0 ,
∂eρ
∂φ

= eφ ,
∂eρ
∂z

= 0

∂eφ
∂ρ

= 0 ,
∂eφ
∂φ

= −er ,
∂eφ
∂z

= 0

∂ez
∂ρ

= 0 ,
∂ez
∂φ

= 0 ,
∂ez
∂z

= 0



Co-ordinate Transformations: Cartesian ⇐⇒ Cylindrical

Tranformations from Cartesian (̂i, ĵ, k̂) ≡ (ex , ey , ez) to cylindrical (eρ, eφ, ez):

Inverse transformations from cylindrical (eρ, eφ, ez) to Cartesian (̂i, ĵ, k̂):

Note:

I The above matrices are orthognal matrices where, MT = M−1

I that the same tranformation rules as above are applicable for transforming
the components of a vector A(x , y , z) ≡ A(ρ, φ, z), i.e.,

(Ax , Ay , Az)⇐⇒ (Aρ, Aφ, Az)



Co-ordinate System: Line, Surface and Volume Elements



Cylindrical System: Line, Surface and Volume Elements

Position vector to any point P = (x , y , x) ≡ (ρ, φ, z) is
−→
OP = r = r(ρ, φ, z).

Arc/Line Elements:

dr = dr(ρ, φ, z) =
∂r

∂ρ
dρ+

∂r

∂φ
dφ+

∂r

∂z
dz

= hρeρ dρ+ hφeφ dφ+ hzez dz

= eρ dρ+ eφ ρ dφ+ ez dz

≡ eρ dsρ + eφ dsφ + ez dsz

dsρ = dρ, dsφ = ρdφ, dsz = dz

Surface Elements:

Surface Shape Unit Normal Elemental Area dS
ρ = const. Cylinder eρ ≡ ρ̂ (eφ × ez) dsφdsz = ρ dφ dz eρ
φ = const. Half Plane eφ ≡ φ̂ (ez × eρ) dsρdsz = dρ dz eφ

z = const. Plane ez ≡ k̂ (eρ × eφ) dsρdsφ = ρ dρ dφ ez

Volume Element: With Jacobian J = hρhφhz = ρ

dV = dsρdsφdsz = J dρ dφ dz = ρ dρ dφ dz



Di�erential Operators In Cylindrical Coordinates

Φ(r) be a di�erentiable scalar �eld, and A(r), a di�erentiable vector �eld, then

I Gradient:

∇Φ =
∂Φ

∂ρ
eρ +

1

ρ

∂Φ

∂φ
eφ +

∂Φ

∂z
ez

I Divergence:

∇ · A =
1

ρ

∂

∂ρ
(ρAρ) +

1

ρ

∂Aφ

∂φ
+
∂Az

∂z

I Curl:

∇× A =

[
1

ρ

∂Az

∂φ
− ∂Aφ

∂z

]
eρ

+

[
∂Aρ

∂z
− ∂Az

∂ρ

]
eφ +

1

ρ

[
∂(ρAφ)

∂ρ
− ∂Aρ

∂φ

]
ez

I Laplacian:

∇2Φ =
1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2
∂2Φ

∂φ2
+
∂2Φ

∂z2



Veri�cation of Stokes' Theorem in Cylindrical (ρ, φ, z) System
Example

Note: Unit vector symbols (aρ, aφ, az) ≡ (eρ, eφ, ez) is used in the book on
Electrodynamics by Sadiku. This example is taken from there.



Note: Line/Arc element is dr ≡ d l = aρ dρ+ aφ ρ dφ+ az dz ; dz = 0







Divergence of Inverse Square Vector Field: The Delta Function



Divergence of Inverse Square Vector Field: The Dirac-Delta



Divergence of Inverse Square Vector Field: The Dirac-Delta (contd.)

I It is true that ∇ · v = 0 everywhere, except at r = 0

I The source of the problem is that ∇ · v 6= 0 at r = 0, where the divergence
blows up!

I To ensure validity of the Volume Integral and the Divergence Theorem
we must assign a functional form of ∇ · v, ∀r, and termed as the 3-dim
Dirac-Delta Function:

∇ · v
4π
≡ δ3(r) =

{
0 if r 6= 0

∞ if r = 0
⇐⇒

˝
V
δ3(r)dτ = 1

�
�

�
�

This bizarre property of δ-function that it vanishes everywhere except at the
origin r = 0, and yet its integral over ANY volume enclosing the origin has a
�nite value (i.e.,4π), makes this �function� di�erent from standard functions
and can rather be termed as a �distribution� or a �generalized function�.



The Delta Step Function in 1D



The Dirac-Delta Function in 1D [δ(ε→0)(x)]

Note: There is no unique way in de�ning the Dirac δ-function !



The Dirac-Delta Function: As the Limit of a Sequence of Fucnctons

R1(x), R2(x), R3(x), · · · , lim
n→∞

Rn(x) → δ(x)

T1(x), T2(x), T3(x), · · · , lim
n→∞

Tn(x) → δ(x)



Facts about de�nition of Dirac δ-function in 1D: A Summary

I In�nitely high and vanishingly thin spike, with the total area under the
curve being unity.

I Di�erent from STANDARD FUNCTIONS, since any standard function
that is equal to zero everywhere and ∞ at a single point must have total
integral zero.

I GENERALIZED FUNCTION or a DISTRIBUTION which can be obtained
in the �limiting sequence� of an in�nitely many functions.

I POINT DENSITY FUNCTION: Physically, its represents density of an
idealized point mass, charge, etc., λ = M,Q, · · · located at, say, x = c,
i.e,

I ONLY makes sense when used under an integral sign. When convoluted
with a well-de�ned test function f (x), the delta function �picks out� the
value of a function at the location of the δ-function:

∞̂

−∞

f (x) δ(x − c) dx =

∞̂

−∞

f (c) δ(x − c) dx = f (c)
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Facts about de�nition of Dirac δ-function in 1D: A Summary

I In�nitely high and vanishingly thin spike, with the total area under the
curve being unity.

I Di�erent from STANDARD FUNCTIONS, since any standard function
that is equal to zero everywhere and ∞ at a single point must have total
integral zero.

I GENERALIZED FUNCTION or a DISTRIBUTION which can be obtained
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Properties of Dirac δ-function in 1D (Prove them!)
1. Convolution: f (x)δ(x − a) = f (a)δ(x − a) , a ∈ R
2. Even function: δ(−x) = δ(x) ≡ δ(|x |)
3. Scaling: δ(ax) = 1

|a|δ(x) , a ∈ R
4. Product: δ(x − y)δ(x − z) = δ(z − y)δ(x − z) = δ(x − y)δ(y − z)

5. Derivative: xδ′(x) = −δ(x)

6. Derivative is an Odd function: δ′(−x) = −δ′(x)

Note: All the above properties must be understood under the integral sign,
i.e., if f (x) is well-de�ned test function then, e.g., (3) must be interpretted as:

∞̂

−∞

f (x) δ(ax) dx =

∞̂

−∞

f (x)

[
1

|a| δ(x)

]
dx

Proof of (6): Using integration by parts and the property (2),
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The 3D Dirac δ-function in Cartesian System (Note: d3r ≡ dV ≡ dτ)



The 3D Dirac δ-function in Curvilinear Co-ordinates (q1, q2, q3)

In general curvilinear co-ordinates with r = r(q1, q2, q3), the tranformation
from Cartesian form, i.e.,

δ3(r − r0) ∝ δ(q1 − q01)δ(q2 − q02)δ(q3 − q03)

is given as:

δ3(r− r0) =
δ3(q1 − q01 , q2 − q02 , q3 − q03)

J
=
δ(q1 − q01)δ(q2 − q02)δ(q3 − q03)

h1h2h3

where r0 ≡ r0(q
0

1
, q0

2
, q0

3
) and h1, h2, h3 are the scale factors.

I Spherical-Polar System with r0 ≡ r0(r0, θ0, φ0) and scale factors
hr = 1, hθ = r , hφ = r sin θ:

δ3(r − r0) =
δ(r − r0)δ(θ − θ0)δ(φ− φ0)

r2 sin θ

I Cylindrical System with r0 ≡ r0(ρ0, φ0, z0) and scale factors
hρ = 1, hφ = ρ, hz = 1:

δ3(r − r0) =
δ(ρ− ρ0)δ(φ− φ0)δ(z − z0)

ρ
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Revisiting ∇ · (r̂/r2)



Application of the 3D δ-function
Example
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