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Spherical-Polar Co-ordinate System: Components

> Position vector of a point P: 4
r
» Cartesian coordinates: e
(x,y,2) £~
» Spherical polar coordinates: Zp
L A Lo
> Length of r: il A
r = |r| (Radial distance) e :\
» Projection of r onto XY plane: - i D
oQ x, L \1a

> Angle between z-axis and r:
0 (Polar angle/Zenith)

> Angle between x-axis and OQ:
¢ (Azimuthal angle)



Spherical-Polar System: 3D Domain

Ranges for Cartesian co-ordinates: x,y,z € (—o0, 00).
Ranges of Spherical polar co-ordinates:
> Radial co-ordinate (distance): r € [0, c0),

» Zenith or Polar co-ordinate: 6 € [0, 7]
> Azimuthal co-ordinate: ¢ € [0,2)



Spherical-Polar System: 3D Domain

Ranges for Cartesian co-ordinates: x,y,z € (—o0, 00).

Ranges of Spherical polar co-ordinates:

> Radial co-ordinate (distance): r € [0, c0),
» Zenith or Polar co-ordinate: 6 € [0, 7]
> Azimuthal co-ordinate: ¢ € [0,2)

Note:

» ¢ is undefined for points on z-axis
» 0 and ¢ are both undefined at the origin



Spherical-Polar System: Co-ordinate Transformations (Bijective Mappings)

r=rlxy.z) = Vx*+y?+2?
2 2
0= b0xy.2) — tan? (_v” )

¢=¢(x,y,2) = tan ' (X)_
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Spherical-Polar System: Co-ordinate Transformations (Bijective Mappings)

x=x(r0,¢) =
y=y(r,0,9) =
z=2(r,0,9) =

«O» «F»r «

¢=¢(x,y,2) = tan ' (X)_

r=rlxy.z) = Vx*+y?+2?
2 2
0= b0xy.2) — tan? (_v” )

rsin 6 cos ¢
rsin@sin ¢

rcos@

it
a
it
v
it
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Spherical-Polar System: Constant Co-ordinate Surface

Three Co-ordinate Surfaces can be obtained by keeping one of the co-ordinates
fixed while varying the other two. A point P in 3D space is the intersection of
these co-ordinate surfaces.
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Three Co-ordinate Surfaces can be obtained by keeping one of the co-ordinates
fixed while varying the other two. A point P in 3D space is the intersection of
these co-ordinate surfaces.

» r-Constant Surface, 8 € [0, 7], ¢ € [0,27) — Sphere



Spherical-Polar System: Constant Co-ordinate Surface

Three Co-ordinate Surfaces can be obtained by keeping one of the co-ordinates
fixed while varying the other two. A point P in 3D space is the intersection of
these co-ordinate surfaces.

» r-Constant Surface, 8 € [0, 7], ¢ € [0,27) — Sphere

» (-Constant Surface, r € [0,00), ¢ € [0,27) — Cone



Spherical-Polar System: Constant Co-ordinate Surface

Three Co-ordinate Surfaces can be obtained by keeping one of the co-ordinates
fixed while varying the other two. A point P in 3D space is the intersection of
these co-ordinate surfaces.

» r-Constant Surface, 8 € [0, 7], ¢ € [0,27) — Sphere
» (-Constant Surface, r € [0,00), ¢ € [0,27) — Cone

» ¢-Constant Surface, 0 € [0, 7], r € [0,00) — Half Plane



Spherical-Polar System: Constant r Surface

3 Coordinate Surfaces can be obtained by keeping one of the coordinates
constant while varying the other two.

r = constant yields a
spherical surface.

Let ¢ = const. > 0.

r(c,0,¢) ={(c,0,9)[0 € [0,7], ¢ € [0,27)}

which is a sphere of
radius c.




Spherical-Polar System: Constant 6 Surface

3 Coordinate Surfaces can be obtained by keeping one of the coordinates
constant while varying the other two.

0 = constant yields a
conical surface.
Z

Let aw = const. > 0.

r(r,a,¢) = {(r, @, ¢)[r €[0,00),¢ € [0,2m)}

which is a cone of
angle a.



Spherical-Polar System: Constant ¢ Surface
3 Coordinate Surfaces can be obtained by keeping one of the coordinates

constant while varying the other two.

¢ = constant yields a
planar surface.

Let kK = const. > 0.
r(r,0,k) ={(r,0,x)[0 € [0,7],r € [0,00)}

which is a half plane
(only one side of the
z-axis) with azimuth
K.



Spherical-Polar System: Intersection of Constant Surfaces

» A point P in 3D space is obtained as an intersection of the 3 const.
co-ordinate surfaces

» The intersection of any two co-ordinate surfaces yields a co-ordinate
line/axis
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Spherical-Polar System: Typical Co-ordinate Curves

Keeping any two co-ordinates fixed and varying the third, we get a co-ordinate
curve/line. Let P (rg, 6o, o) be any point in 3D space.

» r-line: r € [0,00), (6o, o) — fixed 4

r(r) = r(sin B cos ¢o, sin Hg sin ¢o, cos bo ) I —

» O-curve: 0 € [0,7], (ro,¢o) — fixed

Y
r(0) = ro (sin 6 cos ¢o, sin O sin ¢, cos 0) 7

> ¢-curve: ¢ € [0,27), (ro,60) — fixed 0\7
r(¢) = ro (sin 6o cos ¢, sin g sin ¢, cos Og)




Spherical-Polar System: Unit Vectors & Scale Factors

Unit Tangent Vectors to co-ordinate curves at a given point r = r (r, 6, ¢)
r(r,0,¢) = rsinf cos M -+ rsin@sin d)j + rcos 0k

These vectors are not fixed in space, but depend on angles (6, ¢)

(hr, he, hg) are the Scale factors 4
z

or | Or or |
e(0,0) = E/’E =5, /b g
= sin@cosq&?—l—sin05in¢j—|—cosé)ﬁ C/_
h = 1, — I
or | Oor or
e(0,¢0) = %/‘% = 0*9/’79 -
2 2 VY
= cosf cos Pt + cos 0 sin ¢) + sin Ok ><7
he = r

ec‘>(¢)

or | or or ]
= —sinqﬁi—&—cosqﬁj

hy = rsin0.



Spherical-Polar System: Orthonormal Basis Vectors
» Orthonormal system of unit vectors:

e.re,=1 e-epg=1 ez-ey=1,
e.-eg=0, e-e,=0 &ey-e =0,

e X ey —=ey, €y Xey—=e, eyXe —e

> Note: e, — ey — ey are in cyclic order



Spherical-Polar System: Orthonormal Basis Vectors
» Orthonormal system of unit vectors:

e.re,=1 e-epg=1 ez-ey=1,
e.-eg=0, e-e,=0 &ey-e =0,

e X ey —=ey, €y Xey—=e, eyXe —e

> Note: e, — ey — ey are in cyclic order

» Cartesian unit vectors (i,iﬁ) are constants in space and do not depend on
position, but spherical unit vectors especially depend on angles (6, ¢) :

Oe, =0 Oe, —e %—sinee

ar 0 90 " o6 ¢
%—0 @——e %—COSQe
or 980 o6 ¢
9o _o e _g ey

o C B = , 36 = —sinfe, — cosfey



Co-ordinate Transformations: Cartesian <= Spherical-Polar

Co-ordinate tranformations from Cartesian (i, ], k) to spherical (e, s, es) unit

vectors:
(6| (sinBcos¢ sinBsing cosf fi
&, | =| cosBeosd cosBsing —sind || j
é; —sing cosg I



Co-ordinate Transformations: Cartesian <= Spherical-Polar

Co-ordinate tranformations from Cartesian (i, ], k) to spherical (e, s, es) unit

vectors:
£ ro- . - £
sinfcosg  sindsing cosd

e!’
€ | =| cosBeosd cosBsing —sing _}'
é —sing cos@

¢

Inverse transformations from spherical (e,,eq,e,) to Cartesian (,i\,j\, k) unit

vectors:
(i (sinfcos¢ cosBcos¢ —sing f",
7=\ sinBsing cosOsing cosd || é,
& cosé —sing 0 Jlé



Co-ordinate Transformations: Cartesian <= Spherical-Polar

Co-ordinate tranformations from Cartesian (i, ], k) to spherical (e, s, es) unit

vectors:
£ ro- . - £
sinfcosg  sindsing cosd

e!’
€ | =| cosBeosd cosBsing —sing f
é; —sing cosg I

Inverse transformations from spherical (e,,eq,e,) to Cartesian (,i\,j\, k) unit

vectors:
(i (sinfcos¢ cosBcos¢ —sing [ é,
7=\ sinBsing cosOsing cosd || é,
& cosé —sing 0 Jlé
Note:

» The above matrices are orthognal matrices where, M™ = M1

» The same tranformation rules as above are applicable for transforming the
components of a vector A(x,y,z) = A(r,0,9), i.e

(Ax, Ay, Az) <= (Ar, Ag, Ay)



Spherical-Polar System: Line, Surface and Volume Elements

dep
dr / &
1 $ 1 %
1
rd07 0 M Psindg
f L e
(i) Lol
I
] 1
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| 1
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dep ! !
¢ Lo
1 1
rsinfl L
o rsind dg



Spherical-Polar System: Line, Surface and Volume Elements (contd.)
Position vector to any point P(x,y,z) = (r,0,¢) is O? =r=1r(r,0,0).

Arc/Line Elements:

(h,e,) dr + (hg&g) do + (h¢8¢) d¢)



Spherical-Polar System: Line, Surface and Volume Elements (contd.)
Position vector to any point P(x,y,z) = (r,0,¢) is Oj =r=r(r,0,0).

Arc/Line Elements:
or or or
dr=dr(r,0,¢) = (5) dr + (%) do + (87;5) d¢
(h,e,) dr + (hg&g) do + (h¢8¢) d¢)

= le,dr+regdf+ rsinfesdo
e,ds, + egpdsy + e¢ds¢

ds, = dr, dsp = rdf, dsy = rsinfd¢



Spherical-Polar System: Line, Surface and Volume Elements (contd.)
Position vector to any point P(x,y,z) = (r,0,¢) is Oj =r=r(r,0,0).

Arc/Line Elements:
or or or
dr=dr(r,0,¢) = (E) dr + (%) do + (%) d¢
(h,e,) dr + (hg&g) do + (h¢e¢) do

= le,dr+regdf+ rsinfesdo
e,ds, + egpdsy + e¢ds¢

ds, = dr, dsp = rdf, dsy = rsinfd¢

Surface Elements:

Surface Shape Unit Normal Elemental Area dS
r = const. Sphere e =+t (es X €4) dspds, = r°sinfdldoe,
0 = const. Cone e =10 (e¢ X €/)ds dsy = rsin@drdpey

¢ = const.  Half Plane e =0¢ (er X e9) ds,dsy = rdrdfey




Spherical-Polar System: Line, Surface and Volume Elements (contd.)
Position vector to any point P(x,y,z) = (r,0,¢) is Oj =r=r(r,0,0).

Arc/Line Elements:
or or or
dr=dr(r,0,¢) = (E) dr + (%) do + (%) d¢
(h,e,) dr + (hg&g) do + (h¢e¢) do

= le,dr+regdf+ rsinfesdo
e,ds, + egpdsy + e¢ds¢

ds, = dr, dsp = rdf, dsy = rsinfd¢

Surface Elements:

Surface Shape Unit Normal Elemental Area dS
r = const. Sphere e =+t (es X €4) dspds, = r°sinfdldoe,
0 = const. Cone e =10 (e¢ X €/)ds dsy = rsin@drdpey
¢ = const.  Half Plane e =0¢ (er X e9) ds,dsy = rdrdfey

Volume Element: With Jacobian J = h hohg = r*sin@

dV = ds,dsydsy, = Jdr d0 d = r*sin 0 dr dO d



Differential Operators In Spherical Coordinates

®(r) be a differentiable scalar field, and A(r), a differentiable vector field, then

» Gradient: 20 18d> 1 99
Ve =5 ar ety 89 ot rsin@%ed’
» Divergence:
19 1 1 9As
VA= 2 or (r A,) + rsin 00 (Agsm o)+ rsinf O¢
» Curl:
B 1 O(Agsind)  0Ag
VxA = rsin@{ 00 [ol0)
1 1 0A, 8(rA¢) o +1 9(rAg) _ OA
sin6 1ol ar r ar 00
» Laplacian:

s L0 (209) 1 0 (. 00\ 1 0
Vq>7r28r (r 8r)+r25in989(| 089)+r2sin298¢2



Cylindrical Co-ordinates: Co-ordinate Surfaces & Axes

T-@as

e N |

2

o= cuns!;ml-\?’_____

P

L ]

.
=

Transformation: Cartisian (x, v, z) to Cylinderical(p,4,z)

i = gonstant

x=pCos¢, y=pSing, z=z
where p>0, 0<¢g<2x, -w<z<w®

R

(o)

The position vector of P can be written as

F=pCospe +pSinpe +ze,

@ = constant

1l
I



Cylindrical Co-ordinates: Unit Vectors & Scale Factors

E"_ﬁ/‘ﬁ_ﬁ , =cosge, +singe,;  h,=1

)

éaZ%/‘%‘Z%/haZ_Sinﬁséx"‘cm@%@ hy=p

é‘_zf/‘fzf/h‘_zé‘_; P
gz |éz| &z

Note: e, — e, — e, are in cyclic order



Cylindrical Co-ordinates: Unit Vectors

» Cartesian unit vectors are constants and do not depend on position, but
cylindrical unit vectors do:

ey _ %, _ e, _
ap 0 o % 0 5y 0
Oey _ Oy _ ey _
p 0 e gy 0
de, de, Oe; _
ap_o ’ 8¢_0 ’ 82_0



Co-ordinate Transformations: Cartesian <= Cylindrical

Tranformations from Cartesian (i, ], k) = (ex, ey, e.) to cylindrical (e,,es,e.):

e, cosg sing 0)fe
e, |=| —sing cosg 0| e
2 0 0 1)le

Inverse transformations from cylindrical (e,,e4,e,) to Cartesian (i, ], k):

e, cos¢p —sing 0)(e,
e, |=|sing cosg 0 e,
‘éz - ~ 0 0 l .éz -

Note:

> The above matrices are orthognal matrices where, M7 = M~*

> that the same tranformation rules as above are applicable for transforming
the components of a vector A(x,y, z) = A(p, ¢, z), i.e.,

(Ax, Ay, A;) <= (A,, Ay, A7)



Co-ordinate System: Line, Surface and Volume Elements

€z
€s




Cylindrical System: Line, Surface and Volume Elements

Position vector to any point P = (x, y,x) = (p, ¢, z) is O? =r=r(p,¢,2).
Arc/Line Elements:

o 9 9
dr = dr(p, ¢, z) 8—;dp+—rd¢>+—;dz

= hye,dp+ hsey dop + he, dz
= e,dpt+espdp+e,dz
= e,ds, +egdsy +e;ds;

ds, = dp, dsy = pd¢p, ds, = dz

Surface Elements:

Surface Shape Unit Normal Elemental Area dS
p =const.  Cylinder e, =p (e4 x €;)dsgds, = pdopdze,
¢ = const.  Half Plane ey =0 (e; x e,) ds,ds, = dpdzeg,
z = const. Plane e;=k (e, X €4) ds,dsy, = pdpdge,

Volume Element: With Jacobian J = h,hyh, = p
dV = ds,dsyds, = Jdpdpdz = pdpd¢p dz



Differential Operators In Cylindrical Coordinates

®(r) be a differentiable scalar field, and A(r), a differentiable vector field, then

» Gradient: 8¢ 18¢ P
Vd) - 8‘0 p + 8¢ + 792
» Divergence:
10 10A, 8A
V-A=>=—(pA,)+
>0 (PAp) > 0%
» Curl:
10A; 0As
v = [ - %]
0A, 0A; o _’_1 d(pAs)  0A,
0z ap p ap D¢
» Laplacian:

"oy

10 ( 8¢> 1 9% 9%

2
=== =
v pOp p? 0?2 T oz



Verification of Stokes” Theorem in Cylindrical (p, ¢, z) System
Example

Note: Unit vector symbols (a,,a4,a;) = (e,,e4,€;) is used in the book on
Electrodynamics by Sadiku. This example is taken from there.

If A=pcos¢a, + sin ¢ a,, evaluate ¢ A - dl around the path
Confirm this using Stokes’s theorem.

~
—
—

~
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234
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-
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Note: Line/Arc elementis dr=dl=a,dp+aspdp+a,dz; dz=0

Solution:

Let i,\‘d,__H"@Lﬂj‘lﬂﬁ.du

tl [

where path I has been divided into segments ab, be, cd, and da as in Figure.
Along ab, p = 2 and d1 = p d¢ a,. Hence,
b N
J A-dl = J o sin ¢ do = 2{—cos @)

a =607

e
=~(V3-1)

6l

Along be, ¢ = 30° and d1 = dp a,. Hence,

5 21V3

2 4

c 5 192
J.A‘dl=J pcosqbdp:cos?-(}"g
b

p=1

Along cd, p = 5 and dl = p d¢ a,. Hence,

d (il &lF S
{A-.«,ﬂ:j psinqbdni::ﬂ(—cosé]‘ =-i(x/§~1;
- ur

e &= 30"



Along da, ¢ = 60° and 41 = dp a,. Hence,

a 2 pz 2 21
A-dl = peosgdp =cosbl”— | =
_ 2 s 4
o p=3
Putting all these together results in

21V 5V3 s 21
ng-dl——V/E+l+ -I/_JFT
L

%(\/i — 1) = 4.941

Using Stokes's theorem (because L is a closed path)

jEA-dI=H(V><A)-a‘S
. J]

5
But dS = pdé dp a, and
1 aA,  aA, aA. 9A 1 aA,
VXxA-= R R "R ) L
"L ap az} a“'[ az ap] n[ (bAs) = ﬁlﬁ}

=(0 — hha, + (0 — O)a, + %(I + p)sin ¢ a



60° 5
[[(VXAJ':?S: J‘ =1 + p)sin ¢ p dp dob
Y 6=30° Jo=2 P

J. sin ¢ d¢h [- (1 + p)dp
ENG 2

[ 2 5
(e+9)]
30° 2/ 1;

= %?{V’._ ~ 1) = 4941

~cos ¢




Divergence of Inverse Square Vector Field: The Delta Function

$ Thevector function
~ .  Eo
\"F ‘.' ‘/ v ¥ —??’
V2
9 # T R Divergence V- of the above function

o

1ar11“~ la

. _a vy r 1)=0
e el 7w 2t
: U
Surface element ofthe enclosed sphere /[ i
4,4:33 sin@ de dg J/ V-¥dr=0I
v
V # v-rdd
V 3
# R Sin@dddg r]
S

I

=[Sm9 dé [ dp=4r



Divergence of Inverse Square Vector Field: The Dirac-Delta

. Thewector function
"r l S-n" "'=if:
= 4 2 v ]
¥ = ¥
Vi
4 _"'._/T\T'_ e Divergence V- of the above function
¥ ce 1821 10
= | - V- i
ol v * s r? 8?'1 r) r? E,‘rl: ) K
: U
Surfaceelement ofthe enclosed sphere 75
dd = R? sinf d6 do i g —UH
Véj W'ﬁ-wr: # v-FdA
-, w
o AL | )
- | R? Smgdgdﬁ:‘}']
v

5

1

=IS€m‘9 da [ dop=4



Divergence of Inverse Square Vector Field: The Dirac-Delta (contd.)

» It is true that V - v = 0 everywhere, except at r =0

» The source of the problem is that V - v = 0 at r = 0, where the divergence
blows up!

> To ensure validity of the Volume Integral and the Divergence Theorem
we must assign a functional form of V - v, Vr, and termed as the 3-dim
Dirac-Delta Function:

4T o if r=0

v.V—(S“"(r):{ 0 if rz0 =[], S(r)dr =1

his bizarre property of d-function that it vanishes everywhere except at the
origin r = 0, and yet its integral over ANY volume enclosing the origin has a
finite value (i.e.,47), makes this “function” different from standard functions
and can rather be termed as a “distribution” or a “generalized function”.




The Delta Step Function in 1D

5:}}('{) g g

l fb?‘ —;fix":?
1 8 (x)=1¢& “ ;
& 0 fb?‘ M);
_E E » K

f(x) is arbitrary function and well defined at x=0
jf (x) 8" (x) & = If(x}ﬁ (x) d
=f o}j &% (x) d =1 (0)

The smaller g, the better the approximation. Therefore, at the limit of
£—0, we define the Dirac delta function as

[ 7(x)6(x)de=£(0)




The Dirac-Delta Function in 1D [5(=79)(x)]

i“f.";] L] L]
10 Definition
[ 6(x)ax=1 oce 5(x) {0 if x#0
e X)= A
*1  Area=1 - o if x=0
o [£(x)8(x)dc=1(0)
0.2 -
- > ! s T I f(x)é(x-a)dc= f(a)
[l x
1.7 L ¢ L 7
Functions which approach i Tx +e ENTT
the 8-function as a limit of ) )
asequence as £—30 Sin| — Sint | =
1_Ae £ \r
T x ! T X

Note: There is no unique way in defining the Dirac §-function !



The Dirac-Delta Function: As the Limit of a Sequence of Fucnctons

5 2 Ry(x) )

> Ry(x)
1 T1(x)
“i2-1/4 14 12 -2 12 1 x

Technically, §(x) is not a function at all, since its value is not finite at x = 0; in the
mathematical literature it is known as a generalized funetion, or distribution. It
is, if you like, the limit of a sequence of functions, such as rectangles R,(x), of
height #n and width 1/n, or isosceles triangles T, (x), of height n and base 2/n

Ri(x), R2(x), Ra(x),---, nler;O Ri.(x) — 4d(x)
Ti(x); T2(x), Ta(x),---, lim To(x) —  4(x)



Facts about definition of Dirac d-function in 1D: A Summary

» Infinitely high and vanishingly thin spike, with the total area under the
curve being unity.



Facts about definition of Dirac d-function in 1D: A Summary

» Infinitely high and vanishingly thin spike, with the total area under the
curve being unity.

» Different from STANDARD FUNCTIONS, since any standard function
that is equal to zero everywhere and oo at a single point must have total
integral zero.



Facts about definition of Dirac d-function in 1D: A Summary

» Infinitely high and vanishingly thin spike, with the total area under the
curve being unity.

» Different from STANDARD FUNCTIONS, since any standard function
that is equal to zero everywhere and oo at a single point must have total
integral zero.

» GENERALIZED FUNCTION or a DISTRIBUTION which can be obtained
in the “limiting sequence” of an infinitely many functions.



Facts about definition of Dirac d-function in 1D: A Summary

| g

>

Infinitely high and vanishingly thin spike, with the total area under the
curve being unity.

Different from STANDARD FUNCTIONS, since any standard function
that is equal to zero everywhere and oo at a single point must have total
integral zero.

GENERALIZED FUNCTION or a DISTRIBUTION which can be obtained
in the “limiting sequence” of an infinitely many functions.

POINT DENSITY FUNCTION: Physically, its represents density of an
idealized point mass, charge, etc., A = M, Q,--- located at, say, x = c,
ie,

Ao(z —¢) = { 0, if w7 C} with / Ao(z — c)dz = A

oo, if r=¢



Facts about definition of Dirac d-function in 1D: A Summary

| g

>

Infinitely high and vanishingly thin spike, with the total area under the
curve being unity.

Different from STANDARD FUNCTIONS, since any standard function
that is equal to zero everywhere and oo at a single point must have total
integral zero.

GENERALIZED FUNCTION or a DISTRIBUTION which can be obtained
in the “limiting sequence” of an infinitely many functions.

POINT DENSITY FUNCTION: Physically, its represents density of an
idealized point mass, charge, etc., A = M, Q,--- located at, say, x = c,
ie,

0, if z#c¢
oo, if r=¢

Az —c) = { } with /30 M(z —c)dr =\

ONLY makes sense when used under an integral sign. When convoluted
with a well-defined test function f(x), the delta function “picks out” the
value of a function at the location of the J-function:

oo

/ f(x)d(x —c)dx = 7 f(c)d(x — c)dx = f(c)

—o0



Properties of Dirac d-function in 1D (Prove them!)
1. Convolution: f(x)d(x —a) = f(a)d(x —a), ae R
Even function: 6(—x) = §(x) = §(|x|)
Scaling: §(ax) = 36(x), a€ R
Product: 6(x — y)d(x —z) =d6(z — y)d(x — z) = d(x — y)d(y — 2)
Derivative: x&'(x) = —d(x)
Derivative is an Odd function: §'(—x) = —4'(x)

oo E W

Note: All the above properties must be understood under the integral sign,
i.e., if f(x) is well-defined test function then, e.g., (3) must be interpretted as:

7 F(x) 8(ax) dx = 7 £(x) [%' 5(X)] dx




Properties of Dirac d-function in 1D (Prove them!)
1. Convolution: f(x)d(x —a) = f(a)d(x —a), ae R
Even function: 6(—x) = §(x) = §(|x|)
Scaling: §(ax) = 36(x), a€ R
Product: 6(x — y)d(x —z) =d6(z — y)d(x — z) = d(x — y)d(y — 2)
Derivative: x&'(x) = —d(x)
Derivative is an Odd function: §'(—x) = —4'(x)

oo E W

Note: All the above properties must be understood under the integral sign,
i.e., if f(x) is well-defined test function then, e.g., (3) must be interpretted as:

7 F(x) 8(ax) dx = 7 £(x) [%' 5(X)] dx

Proof of (6): Using integration by parts and the property (2),

If x)dx= f(x)o —jf x)dx =—£'(0)
Jf x) 8 (—x)dv = f(x)8( )8 (—x) dx
—jf ) dx = f()

> ()= ()



The 3D Dirac §-function in Cartesian System (Note: d°r = dV = dr)

/j]f("] &(r)d’r=f(0) : v=> Allspace

i oo xl+y3+2; =0
& (x,y.2)=0(r)= i 1,2, 1
o if x+y'+z2'=0

[ 7011 otena o -

More generally,

3 3
/j/ fr) o (ray) d'r = f(x,)
o
53(r=rp) can be split into a product of three one dimensional functions

&’ l:r—rc,_]z 5(:{—_{0]5[}'— %]5[3_3&]



The 3D Dirac d-function in Curvilinear Co-ordinates (g1, g2, g3)

In general curvilinear co-ordinates with r = r(q1, g2, g3), the tranformation
from Cartesian form, i.e.,
8 (r—ro) o< 8(q1 — 65)d(q2 — 63)0(qs — 63)

is given as:

3 (g —a1,92— 93,93 —q3) _ (a1 — q3)6(q2 — g3)0(g3 — a3)
3 (r—ro) =
J hyhahs

where ro = ro(4%, 63, g3) and hy, ha, hs are the scale factors.



The 3D Dirac d-function in Curvilinear Co-ordinates (g1, g2, g3)

In general curvilinear co-ordinates with r = r(q1, g2, g3), the tranformation
from Cartesian form, i.e.,
8 (r—ro) o< 8(q1 — 65)d(q2 — 63)0(qs — 63)

is given as:

Plr—rg) = Sl —ala — 3.9~ a8) _ (o —a?)d(a2 — a3)3(qs — a8)
° J hy hahs

where ro = ro(4%, 63, g3) and hy, ha, hs are the scale factors.
> Spherical-Polar System with rg = ro(ro, 0o, Po) and scale factors
h-=1,hg =r,hy =rsin6:
6(r — r0)0(6 — 60)3(¢ — ¢o)

53(r—ro) =
( o) r2sin6




The 3D Dirac d-function in Curvilinear Co-ordinates (g1, g2, g3)

In general curvilinear co-ordinates with r = r(q1, g2, g3), the tranformation
from Cartesian form, i.e.,
8 (r—ro) o< 8(q1 — 65)d(q2 — 63)0(qs — 63)

is given as:

(e — 1) = F(n—9qi,g2—q%,93 —a3) _ d(q — q1)d(q2 — 93)0(q3 — ¢3)
o J hyhahs

where ro = ro(4%, 63, g3) and hy, ha, hs are the scale factors.

> Spherical-Polar System with rg = ro(ro, 0o, Po) and scale factors
h-=1,hg =r,hy =rsin6:

3(r—rp) = 6(r — r0)0(6 — 60)3(¢ — ¢o)

r2sinf

> Cylindrical System with ro = ro(po, ¢o, o) and scale factors
h, =1,hg =p, h, =1:
S (r —ro) = (p = p0)d(¢ — ¢0)é(z — 20)
p
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Application of the 3D d-function
Example

In spherical coordinates, a charge Q uniformly distributed over a spherical

shell of radius R. Findthe three dimensional charge density 2 (r] byusing
Dirac deita functions.

Solution:

Here the 3D charge density reduces to a 1D charge density along r
Let p(l‘}= fgﬁ(r—ﬂ}, where [ is to be determined

2 m I
Q=[p(r)dv=[ [ [rfos(r-Rr)(rsinédrdsds)
O Gmll gl
R - -
- [ros(r-R) 4z’ & . 08(r-Rr)|
. AT
=47R* fO
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