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Charge Distributions: Continuous & Discrete

Continuous charge distributions:

I Linear Charge Density λ(x) in 1D

λ(x) = lim
∆L→0

∆Q

∆L
=

dQ

dL

I Surface Charge Density σ(r) in 2D

σ(r) = lim
∆S→0

∆Q

∆S
=

dQ

dS

I Volume Charge Density ρ(r) in 3D

ρ(r) = lim
∆V→0

∆Q

∆V
=

dQ

dV

But can we represent discrete point charge distributions or densities?
Using Dirac δ-functions as Volume Charge Densities:

ρ(r) =
∑
i

qiδ
3(r − r0i ) =

∑
i

qiδ(x − x0i )δ(y − y0i )δ(z − z0i )
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Volume Charge Distributions using Dirac δ-functions

All continuous charge distributions in 1D and 2D can ultimately be represented
as 3D Volume Densities using Dirac δ-functions.

Examples

Volume charge density due to

I a uniform linear distribution with charge density λ on the x-axis

ρλ(r) = λδ2(y , z) = λδ(y)δ(z)

I a uniform surface distribution with charge density σ on plane z = c

ρσ(r) = σδ(z − c)

I a uniform surface distribution with charge density σ on a spherical shell of
radius R

ρσ(r) = σδ(r − R)
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Continuous Charge Distribution
Example

Let S be a spherical shell of radius R with variable surface charge density,
σ(R, θ, φ) = σ0 cos θ. Find the total charge using spherical-polar system.

If Su and Sl denote the upper and lower hemispheres, then its total charge Q is

Q =

‹

S

σ(r) dA =

¨

Su

σ(r) dA +

¨

Sl

σ(r) dA ≡ Qu + Ql

Recall: Elemental area on a spherical surface is dA = |N|dθ dφ = R2 sin θ dθ dφ

Qu =

¨

Su

(σ0 cos θ)R2 sin θ dθ dφ

=
σ0R

2

2

ˆ π/2

0

sin 2θ dθ

ˆ 2π

0

dφ

=
σ0R

2

2

[
−cos 2θ

2

]π/2
0

(2π) = πσ0R
2.

However, the integration on θ ∈ [π/2, π] for the lower hemisphere Sl yields
Ql = −πσ0R2. Hence, the total charge on S is Q = Qu + Ql = 0.
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Coulomb's Electrostatic Force Law

Let q1 and q2 be two point charges located at r1 and r2. Then the electrostatic
force exerted on q2 by q1 is

F21(r2) = k q1q2
(r2 − r1)

|r2 − r1|3
= −F12(r1)

I In SI units, k = 1/4πε0, where ε0 is called permittivity of free space

ε0 = 8.85× 10−12
C2

N m
.

I Experiments suggest that this law is valid for a very wide range of distance
scales ∼ 10−18 m to 107 m.
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Linear Superposition Principle holds for Coulomb's Law

Force FAB on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C . Total force on A is given by FA = FAB +FAC .

I Easily generalize to several source charges q1, q2, q3 · · · in which case the
total force on a test charge is

FTotal = F1 + F2 + F3 + · · · =
∑
i

Fi

Fact
The superposition principle is a consequence of the Coulomb's force law

bearing a linear dependence on each source charge, i.e., Ftest ∝ qsource

Example

Would superposition principle hold, e.g., with a quadratic dependence of

Coulomb's Law on each source charge, i.e., Ftest ∝ q2source? NO

Consider a situation with two source charges q1 & q2 located at the same point.

Then, the net force FTotal on a test charge due to the combined source charge

(q1 + q2) would not be equal to the sum of the individual forces, F1 ∝ q21 and

F2 ∝ q22 , since FTotal ∝ (q1 + q2)2 6= q21 + q21 =⇒ FTotal 6= F1 + F2



Linear Superposition Principle holds for Coulomb's Law

Force FAB on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C . Total force on A is given by FA = FAB +FAC .

I Easily generalize to several source charges q1, q2, q3 · · · in which case the
total force on a test charge is

FTotal = F1 + F2 + F3 + · · · =
∑
i

Fi

Fact
The superposition principle is a consequence of the Coulomb's force law

bearing a linear dependence on each source charge, i.e., Ftest ∝ qsource

Example

Would superposition principle hold, e.g., with a quadratic dependence of

Coulomb's Law on each source charge, i.e., Ftest ∝ q2source? NO

Consider a situation with two source charges q1 & q2 located at the same point.

Then, the net force FTotal on a test charge due to the combined source charge

(q1 + q2) would not be equal to the sum of the individual forces, F1 ∝ q21 and

F2 ∝ q22 , since FTotal ∝ (q1 + q2)2 6= q21 + q21 =⇒ FTotal 6= F1 + F2



Linear Superposition Principle holds for Coulomb's Law

Force FAB on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C . Total force on A is given by FA = FAB +FAC .

I Easily generalize to several source charges q1, q2, q3 · · · in which case the
total force on a test charge is

FTotal = F1 + F2 + F3 + · · · =
∑
i

Fi

Fact
The superposition principle is a consequence of the Coulomb's force law

bearing a linear dependence on each source charge, i.e., Ftest ∝ qsource

Example

Would superposition principle hold, e.g., with a quadratic dependence of

Coulomb's Law on each source charge, i.e., Ftest ∝ q2source?

NO

Consider a situation with two source charges q1 & q2 located at the same point.

Then, the net force FTotal on a test charge due to the combined source charge

(q1 + q2) would not be equal to the sum of the individual forces, F1 ∝ q21 and

F2 ∝ q22 , since FTotal ∝ (q1 + q2)2 6= q21 + q21 =⇒ FTotal 6= F1 + F2



Linear Superposition Principle holds for Coulomb's Law

Force FAB on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C . Total force on A is given by FA = FAB +FAC .

I Easily generalize to several source charges q1, q2, q3 · · · in which case the
total force on a test charge is

FTotal = F1 + F2 + F3 + · · · =
∑
i

Fi

Fact
The superposition principle is a consequence of the Coulomb's force law

bearing a linear dependence on each source charge, i.e., Ftest ∝ qsource

Example

Would superposition principle hold, e.g., with a quadratic dependence of

Coulomb's Law on each source charge, i.e., Ftest ∝ q2source? NO

Consider a situation with two source charges q1 & q2 located at the same point.

Then, the net force FTotal on a test charge due to the combined source charge

(q1 + q2) would not be equal to the sum of the individual forces, F1 ∝ q21 and

F2 ∝ q22 , since FTotal ∝ (q1 + q2)2 6= q21 + q21 =⇒ FTotal 6= F1 + F2



Electric Field due to Point-like Source Charges

If there are several discrete point source charges, qi (i = 1, . . . , n), at locations
r′i , then net Electric �eld at r is de�ned as

ETotal(r) = E1(r) + E2(r) + · · ·+ En(r) =
1

4πε0

n∑
i=1

qi (r − r′i )

|r − r′i |
3

I Its unit is measured in Newton/Coulomb (N/C)

I Electric �eld is a vector quantity.

I Linear Superposition Principle holds for electric �elds.

I Total electric or Coulomb force on a test charge Qtest at r is

FTotal(r) = QtestETotal(r).



Electric Field: Discrete (Point-like) & Continuous Distributions

For the most general source charge distribution, with volume charge density ρ,
surface charge density σ, linear charge density λ, as well as discrete point
charges, the electric �eld at a point P(r) by virtue of the Superposition
Principle has the expression

EP(r) =
1

4πε0

n∑
i=1

qi
(
r − r

′
i

)∣∣r − r′i
∣∣3 +

1

4πε0

ˆ

C

λ(r′) (r − r
′)

|r − r′|3
dl ′

+
1

4πε0

¨

S

σ(r′) (r − r
′)

|r − r′|3
da′ +

1

4πε0

˚

V

ρ(r′) (r − r
′)

|r − r′|3
dτ ′



Electric Field due to a Linear Distribution

Example

Consider the straight line segment C : r′(t) = (t, 0, 0); x = t ∈ [0, L] along the
x-axis with uniform linear charge density λ0. Calculate the Electric �eld at the
target point r = (0, 0, z), assuming z � L.

E(r) =
1

4πε0

ˆ
C

λ(r′) (r − r′)

|r − r′|3
dl ′



I Target/Field point r = (0, 0, z),
Source Point r′ = (t, 0, 0)

I r − r′(t) = (−t, 0, z)

I |r − r′(t)| =
√
t2 + z2

I Constant linear density,
λ(r′(t)) = λ0

I Line element, dl ′ = dx = dt

E(r) =
1

4πε0

ˆ
C

λ(r′) (r − r′(t))

|r − r′(t)|3
dl ′ =

λ0
4πε0

ˆ L

0

(
−t̂i + z k̂

)
(t2 + z2)3/2

dt

=
λ0

4πε0z

[(
−1 +

z√
z2 + L2

)
î +

(
L√

z2 + L2

)
k̂

]

=
λ0

4πε0z

−1 +
1√

1 +
(
L
z

)2
 î +

 L

z
√

1 +
(
L
z

)2
 k̂


=

λ0
4πε0z

[(
−1 + 1− L2

2z2
+ · · ·

)
î +

(
L

z

)(
1− 1

2

(
L

z

)2

+ · · ·

)
k̂

]

=
λ0

4πε0z

[
− L2

2z2
î +

L

z
k̂

]
+ ...��

�O(L3), for z � L
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 î +

 L

z
√

1 +
(
L
z

)2
 k̂


=

λ0
4πε0z

[(
−1 + 1− L2

2z2
+ · · ·

)
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î +

L

z
k̂

]
+ ...��

�O(L3), for z � L



I Target/Field point r = (0, 0, z),
Source Point r′ = (t, 0, 0)

I r − r′(t) = (−t, 0, z)

I |r − r′(t)| =
√
t2 + z2

I Constant linear density,
λ(r′(t)) = λ0

I Line element, dl ′ = dx = dt

E(r) =
1

4πε0

ˆ
C

λ(r′) (r − r′(t))

|r − r′(t)|3
dl ′

=
λ0
4πε0

ˆ L

0

(
−t̂i + z k̂

)
(t2 + z2)3/2

dt

=
λ0

4πε0z

[(
−1 +

z√
z2 + L2

)
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Electric Field due to a Surface Distribution

Example

Consider a spherical conducting shell of radius R with uniform surface charge
density σ0. Calculate the Electric �eld at the target point r = (0, 0, z).

E(r) =
1

4πε0

‹

S

σ(r′) (r − r′)

|r − r′|3
dS ′



I Target/Field Point r = (0, 0, z) , Source Point r′ = (R, θ, φ) of dS ′

I Parametric form r′(θ, φ) = R(sin θ cos φ̂i + sin θ sin φ̂j + cos θk̂)

I r − r′(θ, φ) = −R(sin θ cosφ)̂i− R(sin θ sinφ)̂j + (z − R cos θ) k̂

I |r − r′(θ, φ)| =
√
R2 + z2 − 2R z cos θ

I Elemental surface area at r′: dS ′ = R2 sin θdθdφ

E(r) =
1

4πε0

‹

S

σ(r′) (r − r′(θ, φ))

|r − r′(θ, φ)|3
dS ′

=
σ0
4πε0

ˆ π

0

ˆ 2π

0

R2 sin θdθdφ

(R2 + z2 − 2Rz cos θ)3/2

×
[
−R sin θcos φ̂i− R sin θsin φ̂j + (z − R cos θ) k̂

]
=

σ0
4πε0

2πR2

ˆ π

0

(z − R cos θ) sin θdθ

(R2 + z2 − 2Rz cos θ)3/2
k̂ =

(4πR2)σ0
4πε0 z2

k̂
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Divergence of Electric Field due to a Point Charge

Suppose a point (source) charge of magnitude q located at r′ = (x ′, y ′, z ′).
Then the volume charge density at any target point r = (x , y , z) can be
expressed as ρ(r) = qδ3(r − r′) and the Electric �eld at r ∈ R3 is

E(r) =
q

4πε0

r − r′

|r − r′|3

Recall: Divergence of Inverse Square �eld is ∇ · r̂

r2
= 4πδ3(r)

∇ · E(r) =
q

4πε0

[
∇ ·
(

r − r′

|r − r′|3

)]
=

q

4πε0

[
4πδ3(r − r

′)
]

=
1

ε0

[
qδ3(r − r

′)
]

Di�erential form of Gauss's Law:

∇ · E(r) =
ρ(r)

ε0

Also,

˚

V

[∇ · E(r)] dV =
1

ε0

˚

V

ρ(r) d3r =
1

ε0

˚

V

qδ3(r−r′) d3r =

{
1
ε0
q if r′ ∈ V

0 if r′ /∈ V
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Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density ρ

E(r) =
1

4πε0

˚

V

ρ(r′) (r − r′)

|r − r′|3
d3r ′.

Divergence with respect to which variable, r or r′, i.e., ∇· or ∇′· ?
Here we are interested in divergence at �Target�, i.e., with respect to variable r:

∇ · E(r) =
1

4πε0
∇ ·
˚

V

ρ(r′) (r − r′)

|r − r′|3
d3r ′

=
1

4πε0

˚

V

ρ(r′)

(
∇ · (r − r′)

|r − r′|3

)
d3r ′

=
1

4πε0

˚

V

ρ(r′)
(
4πδ3(r − r

′)
)
d3r ′

∇ · E(r) =
1

ε0

˚

V

ρ(r′) δ3(r′ − r)d3r ′ =
1

ε0
ρ(r)
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Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density ρ
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Application of Gauss's Di�erential Law

Example

Find the corresponding charge density for the Electric �eld in space given by

E(r) = Ae−λr (1 + λr)
r̂

r2

where A and λ are constants.

Use Gauss's di�erential formula:

ρ(r) = ε0∇ · E(r)

Use Spherical-polar Co-ordinates:
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Then,

ρ(r) = ε0∇ · E(r) = −ε0A
λ2

r
e−λr
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