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Continuous charge distributions:
» Linear Charge Density A(x) in 1D

B AQ  dQ
A) = Jim AL = dL

» Surface Charge Density o(r) in 2D

() = lim AQ  dQ
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» Volume Charge Density p(r) in 3D

()= lim AQ dQ
P av=0 AV~ dV

But can we represent discrete point charge distributions or densities?
Using Dirac d-functions as Volume Charge Densities:
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as 3D Volume Densities using Dirac d-functions.
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Volume Charge Distributions using Dirac d-functions

All continuous charge distributions in 1D and 2D can ultimately be represented
as 3D Volume Densities using Dirac d-functions.

Examples

Volume charge density due to

» a uniform linear distribution with charge density A on the x-axis
pA() = A2(y, 2) = 26(1)0(z)
» a uniform surface distribution with charge density o on plane z = ¢
palr) = 03(z - )

» a uniform surface distribution with charge density o on a spherical shell of
radius R

po(r) = 5(r — R)



Continuous Charge Distribution
Example

Let S be a spherical shell of radius R with variable surface charge density,
o(R,0,¢) = oq cosl. Find the total charge using spherical-polar system.
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Example
Let S be a spherical shell of radius R with variable surface charge density,
o(R,0,¢) = oq cosl. Find the total charge using spherical-polar system.

If Sy and S; denote the upper and lower hemispheres, then its total charge Q is

Q= # r)dA = //U(r dA+// r)dA= Q.+ Q
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However, the integration on 6 € [r/2, 7] for the lower hemisphere S; yields
Qi = —wooR?. Hence, the total chargeon Sis @ = Q, + Q = 0.



Coulomb’s Electrostatic Force Law

Let g1 and g2 be two point charges located at r; and r2. Then the electrostatic
force exerted on g2 by g1 is
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Coulomb’s Electrostatic Force Law

Let g1 and g2 be two point charges located at r; and r2. Then the electrostatic
force exerted on g2 by g1 is

F21(r2) = kq1q2 |(|;2—;:|2" = —F12(r1)

» In Sl units, k = 1/4meq, where ¢ is called permittivity of free space

C2

€0 = 8.85 X 10—12N —

» Experiments suggest that this law is valid for a very wide range of distance
scales ~ 107 m to 107 m.
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Force Fag on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C. Total force on Ais given by F4 = Fag + Fac.
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Linear Superposition Principle holds for Coulomb’s Law

Force Fag on a charge, say A, due to another charge, say B, is independent of
presence of a third charge, say C. Total force on Ais given by F4 = Fag + Fac.

» Easily generalize to several source charges qi,q2,qs - -+ in which case the
total force on a test charge is

FTota1=F1+F2+F3+--~=ZFi

Fact
The superposition principle is a consequence of the Coulomb’s force law
bearing a linear dependence on each source charge, i.e., Fiest X Qsource

Example

Would superposition principle hold, e.g., with a quadratic dependence of

Coulomb’s Law on each source charge, i.e., Fiest X G2ource? NO

Consider a situation with two source charges g1 & g2 located at the same point.
Then, the net force Frota1 0n a test charge due to the combined source charge
(q1 + g2) would not be equal to the sum of the individual forces, Fy o ¢ and
F2 o G5 , since Frotal < (g1 4 G2)° # Gi + i = Frotal # F1 4+ F2



Electric Field due to Point-like Source Charges

If there are several discrete point source charges, gi (i = 1,...,n), at locations
r;, then net Electric field at r is defined as

1 q(r—r)
4meo = Jr—rj?

ETotal(r) - El(r) + Ez(r) + -+ E,,(r) =

» Its unit is measured in Newton/Coulomb (N/C)
» Electric field is a vector quantity.
» Linear Superposition Principle holds for electric fields.

> Total electric or Coulomb force on a test charge Qtest at r is

FTotal(r) - Qtest ETotal (I’) .



Electric Field: Discrete (Point-like) & Continuous Distributions

For the most general source charge distribution, with volume charge density p,
surface charge density o, linear charge density A, as well as discrete point
charges, the electric field at a point P(r) by virtue of the Superposition
Principle has the expression

Eor) = ZM+ ! /Mdﬂ

dreo = |r—v|? 47r60,c Ir—v|?

o—(r (r—r") ry(r—r)
47{'6 PEER 4 Cle—vP ar
0. —r'] TeQ . —r|
I e P
’.*ra/' ’ﬁi

dl’
(a) Discrete charges (b) Line charge, A

(c) Surface charge, ¢ (d) Volume charge, p



Electric Field due to a Linear Distribution

Example

Consider the straight line segment C : ¢'(t) = (¢,0,0); x = t € [0, L] along the
x-axis with uniform linear charge density Ag. Calculate the Electric field at the
target point r = (0,0, z), assuming z > L.

E(r) = /7“'/) =) g

r—rp?

47eg




» Target/Field point r = (0,0, z),
Source Point ¥’ = (¢,0,0)



> Target/Field point r = (0,0, z), > Constant linear density,
Source Point ¥’ = (¢,0,0) A (t)) = Xo

> r—r'(t) =(-t,0,2) > Line element, dI' = dx = dt

> r—r'(t)] = V2 + 22
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> Target/Field point r = (0,0, z), > Constant linear density,
Source Point ¥’ = (¢,0,0) A (t)) = Xo

> r—r'(t) =(-t,0,2) > Line element, dI' = dx = dt

> r—r'(t)] = V2 + 22

E(r) = 1 /C)\(r’) (r—r'(t) y _ o /OL (—tﬁ—zf()

T 4reo r — r’(t)\3 T 47e (t2 + 22)3/2



> Target/Field point r = (0,0, z), > Constant linear density,
Source Point ¥’ = (¢,0,0) A (t)) = Xo
> r—r'(t) =(-t,0,2) > Line element, dI' = dx = dt

> P =VE T2

E(r) = 1 / A(r') (r = r/(t))dl/ o /L (—tﬁ-zﬁ) B
¢ 0

47eo lr — r/(t)‘3 " 47e (2 + 22)3/2

- 47;\:02 K’“ﬁﬁ)ﬂ (ﬁ) k}

R N
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> Target/Field point r = (0,0, z), > Constant linear density,
Source Point ¥’ = (¢,0,0) A (t)) = Xo

> r—r'(t) =(-t,0,2) > Line element, dI' = dx = dt

> r—r'(t)] = V2 + 22
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Electric Field due to a Surface Distribution

Example

Consider a spherical conducting shell of radius R with uniform surface charge
density og. Calculate the Electric field at the target point r = (0,0, z).

E(r) = - # o) (r=r) 4o

r—r?

o 47eg
S




> Target/Field Point r = (0,0, z) , Source Point ¥ = (R, 0, ¢) of dS’



> Target/Field Point r = (0,0, z) , Source Point ¥ = (R, 0, ¢) of dS’
> Parametric form r'(0, ¢) = R(sin 0 cos ¢i+ sin @sin ¢f+ cos 9!2)



> Target/Field Point r = (0,0, z) , Source Point ¥ = (R, 0, ¢) of dS’
> Parametric form r'(0, ¢) = R(sin 0 cos ¢i+ sin @sin ¢f+ cos&l?)

> r— (0, ¢) = —R(sin 0 cos )i — R(sin Osin ¢)) + (z — R cos 0) k

> r—r'(0,4)| = VRZ+ 22 — 2R zcos 0
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Target/Field Point r = (0,0,z) , Source Point ¥ = (R, 6, $) of dS’
Parametric form +'(0, #) = R(sin 6 cos gzﬁi + sin@sin d)f + cos 9!2)
r—r'(0,6) = —R(sinfcos ¢)i — R(sinOsin $)j + (z — Rcosd) k
[r—r'(0,9)] = VR + 22 —2R zcos 0

Elemental surface area at r': dS’ = R?sin0dfd¢
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E(r) = 47760?5 —ewaP
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Target/Field Point r = (0,0,z) , Source Point ¥ = (R, 6, $) of dS’
Parametric form +'(0, #) = R(sin 6 cos gzﬁi + sin@sin d)f + cos 9!2)

r— rl(07 (;b) =

—R(sin 6 cos ¢)i — R(sin 0sin ¢)j + (z — R cos 0) k

Ir—¢'(6,¢)| = VR? + 22 — 2R zcos 0
Elemental surface area at r': dS’ = R?sin0dfd¢

E(r) =

L o) (-7 (6,9)) o
47@# @ oP
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Target/Field Point r = (0,0,z) , Source Point ¥ = (R, 6, $) of dS’
Parametric form +'(0, #) = R(sin 6 cos gzﬁi + sin@sin d)f + cos 9!2)
r—r'(0,6) = —R(sinfcos ¢)i — R(sinOsin $)j + (z — Rcosd) k
[r—r'(0,9)] = VR + 22 —2R zcos 0

Elemental surface area at r': dS’ = R?sin0dfd¢

1 Lol (- r(0.9)
f0 = 47@# P ©
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Divergence of Electric Field due to a Point Charge

Suppose a point (source) charge of magnitude g located at r' = (x',y’, Z’).
Then the volume charge density at any target point r = (x, y, z) can be
expressed as p(r) = gd>(r — ') and the Electric field at r € R? is
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Divergence of Electric Field due to a Point Charge

Suppose a point (source) charge of magnitude g located at r' = (x',y’, Z’).
Then the volume charge density at any target point r = (x, y, z) can be
expressed as p(r) = gd>(r — ') and the Electric field at r € R? is
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Divergence of Electric Field due to a Point Charge

Suppose a point (source) charge of magnitude g located at r' = (x',y’, Z’).
Then the volume charge density at any target point r = (x, y, z) can be
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Divergence of Electric Field due to a Point Charge

Suppose a point (source) charge of magnitude g located at r' = (x',y’, Z’).
Then the volume charge density at any target point r = (x, y, z) can be
expressed as p(r) = gd>(r — ') and the Electric field at r € R? is
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E(r)
Recall: Divergence of Inverse Square field is V - 5 = 476> (r)
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Differential form of Gauss's Law:

V~E(r):M

Also,
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Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density p
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Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density p

) (r—r) 3,
——dr.
471'60 /// r

Divergence with respect to which variable, r or ', i.e., V- or V' ?

Here we are interested in divergence at “Target”, i.e., with respect to variable r:
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Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density p

W]
r.
471'60

Divergence with respect to which variable, r or ', i.e., V- or V' ?

Here we are interested in divergence at “Target”, i.e., with respect to variable r:
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Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density p

W]
r.
471'60

Divergence with respect to which variable, r or ', i.e., V- or V' ?

Here we are interested in divergence at “Target”, i.e., with respect to variable r:

V-E(r) = 47750 /// p(r‘r _"r/_| r )d3r'
= 471—60 ﬂ/ ( | __r,‘)> d3 /
T e /// ) (4n8%(r = 1)) &'
VED = o /// o) (¢ — 1)’ =
%




Divergence of Electric Field due to Continuous Volume Distribution

Now we extend the result to arbitrary charge distribution with volume density p

W]
r.
471'60

Divergence with respect to which variable, r or ', i.e., V- or V' ?

Here we are interested in divergence at “Target”, i.e., with respect to variable r:

V-E(r) = 47750 /// p(r‘r _"r/_| r )d3r'
= 471—60 ﬂ/ ( | __r,‘)> d3 /
= Ire /// ) (478> (r — ') 1
V-E(r) = o ///p(r’)da'(r’ —ndr = ép(r)
v




Application of Gauss’s Differential Law

Example
Find the corresponding charge density for the Electric field in space given by

E(r) = Ae V(1 + )\r)r%

where A and )\ are constants.
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Application of Gauss’s Differential Law

Example
Find the corresponding charge density for the Electric field in space given by

a 7
E(r) = Ae V(1 +Ar)r—2

where A and )\ are constants.

Use Gauss's differential formula:
plr) = oV - E(1)

Use Spherical-polar Co-ordinates:

0 0
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Application of Gauss’s Differential Law

Example
Find the corresponding charge density for the Electric field in space given by

E(r) = Ae V(1 4 Ar)

7

where A and )\ are constants.

Use Gauss's differential formula:
plr) = oV - E(1)

Use Spherical-polar Co-ordinates:
0 0
e )
V-E = rzar(r E,)—|— T sin0Ey) + 700 5)

Then,
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