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Electrostatic Potential Energy of a Point Test Charge in Electric Field
Consider a stationary configuration of source charge distribution.

> Let E(r) be a pre-existing electric field with potential V(r) at a point P.
» The electrostatic force Freq On a positive test charge Q is

Ffielg = QE = —Fexe.



Electrostatic Potential Energy of a Point Test Charge in Electric Field
Consider a stationary configuration of source charge distribution.

> Let E(r) be a pre-existing electric field with potential V(r) at a point P.
» The electrostatic force Freq On a positive test charge Q is

Ffielg = QE = —Fexe.
Definition

Electrostatic Potential Energy of a test charge Q at point P(r) is equal to the
amount of work done by an external agent against the electrostatic field to
bring the charge Q from oo (or ref) to the point P(r):

r r r

Ue(r) :/ Fext - dr’ = f/AFf,-e,d-dr’ = fQ/E-dr/ = QV(r).

oo oo

Note: The ambiguity in the absolute value of Ug at a point like V!




Electrostatic Potential Energy of a Point Test Charge in Electric Field
Consider a stationary configuration of source charge distribution.

> Let E(r) be a pre-existing electric field with potential V(r) at a point P.
» The electrostatic force Freq On a positive test charge Q is

Ffielg = QE = —Fexe.
Definition

Electrostatic Potential Energy of a test charge Q at point P(r) is equal to the
amount of work done by an external agent against the electrostatic field to
bring the charge Q from oo (or ref) to the point P(r):

r r r

Ue(r) :/ Fext - dr’ = f/AFf,-e,d-dr’ = fQ/E-dr/ = QV(r).

oo oo

Note: The ambiguity in the absolute value of Ug at a point like V!

» Electrostatic Energy difference between two points a and b can be
unambiguously expressed in terms of the Potential difference:

b
Ue(b) — Ue(a) = Q[V (b) — V (a)] = —Q/E(r’) - dr'.



Potential Energy due to a system of Point Charges in free Field

Consider bringing in source charges g1, g2,q3, - , g, One by one from oo.
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» No work done in placing first charge g1
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» Total Work done is placing up to the .
second charge g> at ra: /
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Potential Energy due to a system of Point Charges in free Field

Consider bringing in source charges g1, g2,q3, - , g, One by one from oo.
» No work done in placing first charge g1 s
atry, ie., Wi =0 *
» Total Work done is placing up to the »
second charge g> at ra:
1 1 i
Wa = Witows = 0+ hee  _ 9192
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» Total Work done in placing up to the
third charge g3 at r3:

Wz = Wo+dws = Wa+ g3 (ﬂ + 2)
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Potential Energy due to a system of Point Charges in free Field

Consider bringing in source charges g1, g2,q3, - , g, One by one from oo.
» No work done in placing first charge g1 s
atry, ie., Wi =0 *
» Total Work done is placing up to the »
second charge g> at ra:
q1
r
1
Wa = Witows = 0+ hee  _ 9192
471'60 |I'1 — rz‘ 47T60 na

» Total Work done in placing up to the
third charge g3 at r3:

05
Wz = Wao+dws = Wz-l—i (ﬂ + 2) 0eqs® ® o
4mep \ N3 ra3 eq1 e

> Generalize formula up to n charges:
(j # i Self interactions excluded')

Z Z (q,q,) — No Double Counting
47reo

i=1 j=2,j>i

Z Z q,qj) — With Double Counting

i=1 j=1,j#i

W, = W,_1+4dw,

87T60



Potential Energy of a system of Point Charges in free Field (contd.)

» The Electrostatic Potential Energy is equal to the total work done W, to

assemble the configuration of n point charges at ri,r2, -+ ¥
_ qiq
UE(rlerV"'vr"):W":SWEOZ Z ( IJ)
i=1 j=1,j#i

1 n . n 1 qj
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Potential Energy of a system of Point Charges in free Field (contd.)

» The Electrostatic Potential Energy is equal to the total work done W, to

assemble the configuration of n point charges at ry,r2, - - -

Ue(ri,rz, -+ ,r) = W,

> V; = V(r;): Potential at the i*

, P

>y

(qlqj)
i=1 j=1,j#i

1 n n 1 q

- E . § '

2 4 a 4~ Areo rjj
i=1 J=1, j#i

1< 1< 1<
EEQiV(I’i)EEZQiVIZEEUE

" charge site r; due to other n — 1 charges.

87reo




Potential Energy of a system of Point Charges in free Field (contd.)

» The Electrostatic Potential Energy is equal to the total work done W, to

assemble the configuration of n point charges at ry,rz -+ ,rp:
_ qiq
UE(rlerV""r"):W":87r€oz Z ( IJ)
i=1 j=1,j#i

1 n . n 1 qj
Ezq' Z 47r€o;j

=1 =1, i
1 1¢ 1¢
:EZQIV(W)EEZQIVIZEEUEI

> V; = V(r;): Potential at the i"" charge site r; due to other n — 1 charges.

» The result is independent of the order/sequence in which the charges are
assembled at the respective EXACT locations, ri,ra, -+ ,rp.

UE(I’1,I’2Y cee ,r,,) = UE(I’27I’,,, cee 7I’1) =...= Ug [Permute(rl,rg, cee 7I’n)]



Potential Energy of a system of Point Charges in free Field (contd.)

» The Electrostatic Potential Energy is equal to the total work done W, to

assemble the configuration of n point charges at ry,rz -+ ,rp:
_ qiq
UE(rlerV""r"):W":87r€oz Z ( IJ)
i=1 j=1,j#i

1 n . n 1 qj
Ezq' Z 47r€o;j

=1 =1, i
1 1¢ 1¢
:EZQIV(W)EEZQIVIZEEUEI

> V; = V(r;): Potential at the i"" charge site r; due to other n — 1 charges.

» The result is independent of the order/sequence in which the charges are
assembled at the respective EXACT locations, ri,ra, -+ ,rp.

UE(I’1,I’2Y cee ,r,,) = UE(I’27I’,,, cee 7I’1) =...= Ug [Permute(rl,rg, cee 7I’n)]

» The result OBVIOUSLY, depends on the respective locations of the
charges. Thus, Ug is called the CONFIGURATION ENERGY.



Configuration Energy of Point Charges in free space

» Superposition Principle is invalid (1/2 factor avoids double counting!):

UE:%;UE‘
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Recall:

»> While defining Ug, we said “No work done in placing first charge q1 at r1."
» All terms i = j were absent in Ug.



Configuration Energy of Point Charges in free space

» Superposition Principle is invalid (1/2 factor avoids double counting!):

UE:%;UE

Recall:
»> While defining Ug, we said “No work done in placing first charge q1 at r1."
» All terms i = j were absent in Ug.

» SELF-ENERGIES of the individual point charges were excluded!

Definition

SELF-ENERGY: This is the amount of energy needed to fabricate or build-up
the individual point charges by bringing their respective differential amounts of
constituent charges from oo to the specific locations.




Electrostatic Potential Energy of General Distribution of Source Charges
Localized charge distributions:
e o e Hmgep
.‘."'/ » Volume V with volume charge density p(r)

L

Surface S with surface charge density o(r)
{a) Discrete charges

Curve [ with linear charge density A(r)

>
>
P > Discrete point charges g; at r;
L)
——L > Potential V/(r)
ar
>

Configuration Energy of system of charges:

Ue = [l eteviyar 5 [l oyvie) ae
da’' . ] *p v S
== n
1 ' / ’ /! 1 /
' +§./)\(r)V(r)dl +§Zq,-V(r,-)
(c) Surface charge, & r i=1
L
. 7

(d) Volume charge, p

(b) Line charge, A



Electrostatic Potential Energy of General Distribution of Source Charges

n p Localized charge distributions:
.‘."'/ » Volume V with volume charge density p(r)

L

Surface S with surface charge density o(r)
{a) Discrete charges

Curve [ with linear charge density A(r)

>
>
P > Discrete point charges g; at r;
L)
——L > Potential V/(r)
ar
>

Configuration Energy of system of charges:

Ue ~ %///p(r’)V(r’)dT’Jr%//J(/)V(r/)da’
da’ "' *P v . Sn
v + % / M)V () dl + % Z qiV(r})
r i=1

(c) Surface charge, &

(b) Line charge, A

5 > Note: Self-energies of continuous distributions
4 are included but not for discrete point charges!
g > What else is missing here?

(d) Volume charge, p



Electrostatic Potential Energy of General Distribution of Source Charges

n p Localized charge distributions:
.‘."'/ » Volume V with volume charge density p(r)

L

Surface S with surface charge density o(r)
{a) Discrete charges

Curve [ with linear charge density A(r)

>
>
P > Discrete point charges g; at r;
L)
——L > Potential V/(r)
ar
>

Configuration Energy of system of charges:

Ue ~ %///p(r’)V(r’)dT’+%//J(/)V(r/)da’
da’ "' *P v . Sn
v + % / M)V () dl + % Z qiV(r})
r i=1

(c) Surface charge, &

(b) Line charge, A

5 > Note: Self-energies of continuous distributions
4 are included but not for discrete point charges!
P

» What else is missing here?
INTERACTION ENERGIES

(d) Volume charge, p . Lo L. L
» Superposition Principle is invalid in general!




True Configuration Energy of General Localized Charge Distribution

> Consider the most general localized charge distribution pio: in a region V,
bounded by a closed surface S :

Ue = %/// prot(r )V (') d7'.
A%
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> Consider the most general localized charge distribution pio: in a region V,
bounded by a closed surface S :

Ue = %/// prot(r )V (') d7'.
A%

> Using Gauss's differential law at source: piot(r') = oV’ - E(r),

Use = %///p(r')V(r')dT' = %"/// [V'-E(¢)] V() dr’
v v




True Configuration Energy of General Localized Charge Distribution

> Consider the most general localized charge distribution pio: in a region V,
bounded by a closed surface S :

_ % /// prot (FYV(') 7.
%

> Using Gauss's differential law at source: piot(r') = oV’ - E(r),

l/// (FyV(')dr 60//VE(r V(') dr
_ /// O+ [VOOEW]] o

Eo // ’E(r/)}somcedﬂ + %’ [V(rl) E(r/)} boundary - da’.
v S

Ue

» In the last step, we applied the Gauss’ Divergence Theorem to obtain the
surface integral over the bounding surface S.

Recall Identity: V- (VE) =V (V-E)+(VV)-E=V(V-E)— |E]



> Let us EXTEND the integration over a very large SPHERICAL volume v,
with bounding surface S, enclosing the LOCALIZED distribution V:

Ve =5 [ mtvier o =3 [[] ot yvier




> Let us EXTEND the integration over a very large SPHERICAL volume v,
with bounding surface S, enclosing the LOCALIZED distribution V:

Ve =5 [ mtvier o =3 [[] ot yvier

» For localized distribution at a distant point P, V/(r) oc 1/r, |E(r)| o< 1/r?

> For points r’ on this very large spherical surface S,

# [V(I’l) E(r/)]boundary'da/ o8 (l/ . % . r’2> ~ # (l/) — 0, r = 0.
3 r r g r -

S



True Configuration Energy of General Charge Distribution (contd.)

> Extending to include ALL SPACE: V — V.o = R3 and § — S.., then
the surface integral vanishes!

///Ptot V(') d ///Ptot V(') d

V—=Veo 5500

Ue



True Configuration Energy of General Charge Distribution (contd.)

> Extending to include ALL SPACE: V — V.o = R3 and § — S.., then
the surface integral vanishes!

Ue = ///ptot V(') d ///pmt V(') d

0
= % // |E|§ource dT/ + %) # (V E ary ° da/
\7%&/00 5500
= 3 [0 e 97
All Space

» All inclusive formula: SELF-ENERGIES and INTERACTION ENERGIES
of ALL localized charge distributions.



True Configuration Energy of General Charge Distribution (contd.)

> Extending to include ALL SPACE: V — V.o = R3 and § — S.., then
the surface integral vanishes!

Ue = ///ptot V(') d ///pmt V(') d

0
= % // |E|§ource dT/ + 650 # (V E ary ° da/
\7%&/00 555
€0 2
= E |E(r/)|S0llTCe dT,
All Space

» All inclusive formula: SELF-ENERGIES and INTERACTION ENERGIES
of ALL localized charge distributions.

In Summary: 2 Prescriptions to determine the Configuration Energy of a Lo-
calized distribution (depending on convenience) in a given problem

,% /// ptm(r)V(r)dT:%O///

V—original vol. All Space




Configuration Energy of a Charged Sphere

Example

Determine the total configuration/self energy of a uniformly charged solid
sphere Vg of radius R and charge q.



Configuration Energy of a Charged Sphere

Example

Determine the total configuration/self energy of a uniformly charged solid
sphere Vg of radius R and charge q.

» AUGMENTED VOLUME: Consider a very large concentric spherical
volume V; of radius a >> R, with its bounding surface S,, enclosing the
original charged sphere Vg .




Configuration Energy of a Charged Sphere

Example

Determine the total configuration/self energy of a uniformly charged solid
sphere Vg of radius R and charge q.

» AUGMENTED VOLUME: Consider a very large concentric spherical
volume V; of radius a >> R, with its bounding surface S,, enclosing the
original charged sphere Vg .

/// PV // E()[ dr + 5 ¢p V(D E(r) - da

VR4>Va Sa



» Electric fields due to original charged sphere Vg (by Using Gauss's Law):




» Electric fields due to original charged sphere Vg (by Using Gauss's Law):

E(r){‘lﬂleolgg’l; r<R

> Potentials due to original charged sphere Vi (using V(r) = — |7 E - dl):

V(r):{%;’?(?’_;) reR

1_g r>R

4Teg r




» Electric fields due to original charged sphere Vg (by Using Gauss's Law):

E(r){“"lm'g;? r<R

> Potentials due to original charged sphere Vi (using V(r) = — |7 E - dl):

V(r):{swz‘)’?@_’;) reR

1_g r>R

4Teg r

> Volume integral over the augmented volume V, of radius a > R:

€0 €0 q 2 R/ 271 i
= E(r)I? _ 0 I\ ,2 R
5 // |E(r)|"dT 5 (471’60) {/0 (Rﬁ)r dr—i—/R <r4> r dr}/dQ
Va 0
2
_ @ f(1y (11
8meo 5R <R R a R<r<a




» Electric fields due to original charged sphere Vg (by Using Gauss's Law):

E(r){‘“‘lm’g;? r<Rr

> Potentials due to original charged sphere Vi (using V(r) = — |7 E - dl):

V(r):{swz‘)’?@_’;) reR

1_g r>R

4Teg r

> Volume integral over the augmented volume V, of radius a > R:

€0 €0 q 2 R/ 271 i
2 _ 0 o 2 il 2
: // E()Pdr = 5 (47r60) {/0 (Rﬁ)rdr—i—/R <r4>rdr}/dQ
V, 0
2
_ @[y (11
8meo 5R <R R a R<r<a

> Surface integral over the augmented sphere S, of radius a > R:

62053 o) E(af)]-da = (1) (-0 4“2):(8::0r),:a




» Extend V, to include ALL SPACE:

VQ%VOOER:‘; & 53*>5002>34)OC



» Extend V, to include ALL SPACE:
Voo Ve=R® & S, 55, — a— o0

» Configuration energy (self-energy) of the charged sphere Vg:

— 6" // |E(r)|? dT +7 #V(r)E(r)~da

va—n;Oo Sa—Sco



» Extend V, to include ALL SPACE:
Voo Ve =R & 5,5 S = a—
» Configuration energy (self-energy) of the charged sphere Vg:

Us = 6" // [E(r)|? dr +— #V(r)E(r)~da

va—n;Oc Sa—Sco

0
2

. g 1 1 Z 7
= | - _
e 8meo | 5R + R + €0a

1 (e
T 4me \ BR

v = /// E(e)P dr = — <ﬁ)

4meg \ BR
All Space




» Extend V, to include ALL SPACE:
Vo> Ve =R® & S, =S — a—

» Configuration energy (self-energy) of the charged sphere Vg:

Us = 6" // [E(r)|? dr +— #V(r)E(r)~da

va—n;Oc Sa—Sco

2 2
. q 1 1 q
= | -
aLn;o 8meo 5R + R Z + €oa
_ 1 3q¢°
T 4me \ BR

v = /// IE(r)[2 d¢:47:€0 <35i;).

0

All Space

» Check by direct integration over the original charged sphere Vg:

R 4w
_1 _w(q 2/ 72 / _ 1 (3¢
Ue = 2///p(r)V(r)de > (47T60> R )" dr | dQ = e \5R )
Vr 0 0




Self-energy of a Point Charge

» Electric field of a point charge placed at origin:

Er) = — ¢

41eq r?



Self-energy of a Point Charge

» Electric field of a point charge placed at origin:

1 gq.
E(r) - 4reg rf2r

> Self-Energy:

- 2 . ~ 2
_ €0 2 € ( g LN 2 :
W= > /// |[E(r)|"dT > (47T60> {/0 (—4> r dr/sm@d@/ d(b}
All Space 0 0
2
€ q > /1 2
- 3 (@) {1 ()}




Self-energy of a Point Charge

» Electric field of a point charge placed at origin:

1 gq.
E(r) - 4reg rf2r

> Self-Energy:

rr 2 00 A 27.T
_ 2 “©( 4 N g [ s
W= 3 /// |[E(r)|"dT 3 (47T60> {/0 (r”’) r dr/sm@d@/ d(b}
All Space 0 0
€ 2 > /1
= 2 d / = ) 4xrdr
2 \4meg 0 r4

2 © 1
= 9 Jim / —dr
8meo 6R—0 Jsp 1



Self-energy of a Point Charge

» Electric field of a point charge placed at origin:

1 gq ;
B(r) = 47eo r2

> Self-Energy:

w=2 /// E@)ldr = 2 (4710)2 {/000 (ri) r dr/smede/ d¢}
(1G]

2 oo 2
q . 1 q 1
= lim —dr = lim — =

8meo SR D0 /M r2 8meg 5R—0 OR o

» Since the radius 0R of the point charge vanishes, the self-energy blow up!



Self-energy of a Point Charge

» Electric field of a point charge placed at origin:

1 gq ;
B(r) = 47eo r2

> Self-Energy:

W= Z"Ané/éce E(r)Pdr 3 (4:@)2 /0'oo (ri) r dro/sm9d9/ do
()

2 oo 2
. 1 q 1
= lim —dr = lim — = o0
8mep SR—0 _/55, r2 8meg 6R—0 OR

» Since the radius 0R of the point charge vanishes, the self-energy blow up!
> Point charges are idealized concepts. In reality R # 0 (say, for electrons),
so Self-Energies (classically) of spherical objects of finite radius dR is:

1 (34 .
Wsphere - 4reo (5 6:“_\)) — finite




Interaction Energy of two Point Charges
Example

Find the Interaction energy of two charges, g1 and gz located at r; and r»,
respectively.
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Net Electric field at any point r (Superposition Principle)

E(r) = Es(r) + E2(r),
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Interaction Energy of two Point Charges
Example
Find the Interaction energy of two charges, g1 and gz located at r; and r»,
respectively.

Net Electric field at any point r (Superposition Principle)
E(r) = Ex(r) + Ex(r),

Total Configuration Energy:

w o= 2 [ Eorer=2 [ Ew+e@ra

All Space All Space

// |Ex(r \dT+ // |Ea(r |dT+ ///251(r Ex(r) dr

A11 Space All Space All Space



Interaction Energy of two Point Charges
Example

Find the Interaction energy of two charges, g1 and gz located at r; and r»,
respectively.

Net Electric field at any point r (Superposition Principle)
E(r) = Ex(r) + Ex(r),

Total Configuration Energy:

w o= 2 [ Eorer=2 [ Ew+e@ra

All Space All Space
/ ‘El ‘ dT+ // |E2 | CIT-I— ﬁ 2E1(I’ E2 )
A11 Space All Space All Space

Interaction Energy:

int _ _ qi1q2 I'—l"l r—r2)
W — e /// E1(r).Ez(r)dT—167T260 /// o g

All Space Space




Interaction Energy of two Point Charges
Example
Find the Interaction energy of two charges, g1 and gz located at r; and r»,
respectively.

Net Electric field at any point r (Superposition Principle)
E(r) = Ex(r) + Ex(r),

Total Configuration Energy:

w o= 2 [ Eorer=2 [ Ew+e@ra

All Space All Space
/// B dr + 2 /// Ea(r) dr + 2 ///QEl(r CEa(r) dr
A11 Space All Space All Space

Interaction Energy:

wint — E\ () Eo(r) dr — 192 /// r—ri) r—rz)d _ 3
€ /]/ l(r) z(r) T 167T260 \r7r1|3\r7r2|3 T 471'60/’12

All Space Space

= This is exactly the work done by an external agent in bringing g2 from oo to
r> with g already present at ry.



Total Configuration Energy & Density

» Interesting Question: Where is the total energy stored?
» ...in the charges?...in the fields?



Total Configuration Energy & Density

» Interesting Question: Where is the total energy stored?
» _..in the charges?...in the fields? No unique answer to that question!

» The equation involves integration over all charge distributions:

Ug = %/// p(r)V(r) d*r
v

> suggests that the energy may be stored in the charges.



Total Configuration Energy & Density

» Interesting Question: Where is the total energy stored?
» _..in the charges?...in the fields? No unique answer to that question!

» The equation involves integration over all charge distributions:

Ug = %/// p(r)V(r) d*r
v

> suggests that the energy may be stored in the charges.

» The equation involves integration over all field configurations:
Ue =+ /// E*(r) d*r
All Space

> suggests that the energy may be stored in the fields.



Total Configuration Energy & Density

v

Interesting Question: Where is the total energy stored?
...in the charges?...in the fields? No unique answer to that question!

The equation involves integration over all charge distributions:

Ug = % /// p(r)V(r) d*r
v

> suggests that the energy may be stored in the charges.

The equation involves integration over all field configurations:
€o . 2 3
Ue = — E-(r) d°r
All Space

> suggests that the energy may be stored in the fields.

It is conventional to define an ENERGY DENSITY:

u(r) = 3 [E()F

> a volume dv will contain Electrostatic Potential Energy equal to
u(r)dv.
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