
Physics II (PH 102)

Electromagnetism (Lecture 8 & 9)

Udit Raha

Indian Institute of Technology Guwahati

Feb 2020



Electrostatic Potential Energy of a Point Test Charge in Electric Field

Consider a stationary con�guration of source charge distribution.

I Let E(r) be a pre-existing electric �eld with potential V (r) at a point P.

I The electrostatic force Ffield on a positive test charge Q is

Ffield = QE = −Fext .

De�nition
Electrostatic Potential Energy of a test charge Q at point P(r) is equal to the
amount of work done by an external agent against the electrostatic �eld to
bring the charge Q from ∞ (or ref) to the point P(r):

UE (r) =

rˆ

∞

Fext · dr′ = −
rˆ

∞

Ffield · dr′ = −Q
rˆ

∞

E · dr′ = QV (r).

Note: The ambiguity in the absolute value of UE at a point like V !

I Electrostatic Energy di�erence between two points a and b can be
unambiguously expressed in terms of the Potential di�erence:

UE (b)− UE (a) = Q[V (b)− V (a)] = −Q
bˆ

a

E(r′) · dr′.
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Potential Energy due to a system of Point Charges in free Field

Consider bringing in source charges q1, q2, q3, · · · , qn, one by one from ∞.

I No work done in placing �rst charge q1
at r1, i.e., W1 = 0

I Total Work done is placing up to the
second charge q2 at r2:

W2 = W1+δw2 = 0+
1

4πε0

q1q2
|r1 − r2|

=
1

4πε0

q1q2
r12

I Total Work done in placing up to the
third charge q3 at r3:

W3 = W2+δw3 = W2+
q3
4πε0

(
q1
r13

+
q2
r23

)
I Generalize formula up to n charges:

(j 6= i Self interactions excluded!)

Wn = Wn−1 + δwn =
1

4πε0

n−1∑
i=1

n∑
j=2, j>i

(
qiqj

rij

)
→ No Double Counting

≡ 1

8πε0

n∑
i=1

n∑
j=1, j 6=i

(
qiqj

rij

)
→With Double Counting
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Potential Energy of a system of Point Charges in free Field (contd.)

I The Electrostatic Potential Energy is equal to the total work done Wn to
assemble the con�guration of n point charges at r1, r2, · · · , rn:

UE (r1, r2, · · · , rn) ≡Wn =
1

8πε0

n∑
i=1

n∑
j=1, j 6=i

(
qiqj

rij

)

=
1

2

n∑
i=1

qi

 n∑
j=1, j 6=i

1

4πε0

qj

rij



=
1

2

n∑
i=1

qiV (ri ) ≡
1

2

n∑
i=1

qiVi =
1

2

n∑
i=1

uEi

I Vi ≡ V (ri ): Potential at the i th charge site ri due to other n − 1 charges.

I The result is independent of the order/sequence in which the charges are
assembled at the respective EXACT locations, r1, r2, · · · , rn.

UE (r1, r2, · · · , rn) = UE (r2, rn, · · · , r1) = · · · = UE [Permute(r1, r2, · · · , rn)]

I The result OBVIOUSLY, depends on the respective locations of the
charges. Thus, UE is called the CONFIGURATION ENERGY.
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Con�guration Energy of Point Charges in free space

I Superposition Principle is invalid (1/2 factor avoids double counting!):

UE =
1

2

n∑
i=1

uEi

Recall:
I While de�ning UE , we said �No work done in placing �rst charge q1 at r1.�
I All terms i = j were absent in UE .

I SELF-ENERGIES of the individual point charges were excluded!

De�nition�
�

�



SELF-ENERGY: This is the amount of energy needed to fabricate or build-up
the individual point charges by bringing their respective di�erential amounts of
constituent charges from ∞ to the speci�c locations.
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Electrostatic Potential Energy of General Distribution of Source Charges

Localized charge distributions:

I Volume V with volume charge density ρ(r)

I Surface S with surface charge density σ(r)

I Curve Γ with linear charge density λ(r)

I Discrete point charges qi at r
′
i

I Potential V (r)

I Con�guration Energy of system of charges:

UE ≈ 1

2

˚

V

ρ(r′)V (r′) dτ ′ +
1

2

¨

S

σ(r′)V (r′) da′

+
1

2

ˆ

Γ

λ(r′)V (r′) dl ′ +
1

2

n∑
i=1

qiV (r′i )

I Note: Self-energies of continuous distributions
are included but not for discrete point charges!

I What else is missing here?
INTERACTION ENERGIES

I Superposition Principle is invalid in general!
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True Con�guration Energy of General Localized Charge Distribution

I Consider the most general localized charge distribution ρtot in a region V ,
bounded by a closed surface S :

UE =
1

2

˚

V

ρtot(r
′)V (r′) dτ ′.

I Using Gauss's di�erential law at source: ρtot(r
′) = ε0∇′ · E(r′),

UE =
1

2

˚

V

ρ(r′)V (r′) dτ ′ =
ε0
2

˚

V

[
∇′ · E(r′)

]
V (r′) dτ ′

=
ε0
2

˚

V

[∣∣E(r′)
∣∣2 +∇′ ·

[
V (r′)E(r′)

]]
source

dτ ′

=
ε0
2

˚

V

∣∣E(r′)
∣∣2
source

dτ ′ +
ε0
2

‹

S

[
V (r′)E(r′)

]
boundary · da′.

I In the last step, we applied the Gauss' Divergence Theorem to obtain the
surface integral over the bounding surface S .

Recall Identity: ∇ · (V E) = V (∇ · E) + (∇V ) · E = V (∇ · E)− |E|2
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I Let us EXTEND the integration over a very large SPHERICAL volume Ṽ ,
with bounding surface S̃ , enclosing the LOCALIZED distribution V:

UE =
1

2

˚

V

ρtot(r
′)V (r′) dτ ′ =

1

2

˚

Ṽ

ρtot(r
′)V (r′) dτ ′

I For localized distribution at a distant point P, V (r) ∝ 1/r , |E(r)| ∝ 1/r2

I For points r′ on this very large spherical surface S̃ ,‹

S̃

[V (r′)E(r′)]boundary·da′ ∝
(
1

r ′
· 1

r ′2
· r ′2

)
S̃

∼ #

(
1

r ′

)
S̃

→ 0, r ′ →∞.
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True Con�guration Energy of General Charge Distribution (contd.)

I Extending to include ALL SPACE: Ṽ → V∞ ≡ R3 and S̃ → S∞, then
the surface integral vanishes!

UE =
1

2

˚

V

ρtot(r
′)V (r′) dτ ′ =

1

2

˚

Ṽ

ρtot(r
′)V (r′) dτ ′

=
ε0
2

˚

Ṽ→V∞

|E|2source dτ ′ +

���
���

���
���:

0
ε0
2

‹

S̃→S∞

(V E)boundary · da′

=
ε0
2

˚

All Space

∣∣E(r′)
∣∣2
source

dτ ′

I All inclusive formula: SELF-ENERGIES and INTERACTION ENERGIES
of ALL localized charge distributions.

In Summary: 2 Prescriptions to determine the Con�guration Energy of a Lo-
calized distribution (depending on convenience) in a given problem

UE =
1

2

˚

V→original vol.

ρtot(r)V (r) dτ =
ε0
2

˚

All Space

|E(r)|2 dτ
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UE =
1

2

˚

V→original vol.

ρtot(r)V (r) dτ =
ε0
2

˚

All Space

|E(r)|2 dτ



Con�guration Energy of a Charged Sphere

Example

Determine the total con�guration/self energy of a uniformly charged solid
sphere VR of radius R and charge q.

I AUGMENTED VOLUME: Consider a very large concentric spherical
volume Va of radius a� R, with its bounding surface Sa, enclosing the
original charged sphere VR .

UE =
1

2

˚

VR→Va

ρ(r)V (r) dτ =
ε0
2

˚

Va

|E(r)|2 dτ +
ε0
2

‹

Sa

V (r)E(r) · da
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I Electric �elds due to original charged sphere VR (by Using Gauss's Law):

E(r) =

{
1

4πε0

qr
R3 r̂ r < R

1
4πε0

q
r2
r̂ r > R

I Potentials due to original charged sphere VR (using V (r) = −
´ r

∞ E · d l):

V (r) =

{
q

8πε0R

(
3− r2

R2

)
r < R

1
4πε0

q
r

r > R

I Volume integral over the augmented volume Va of radius a� R:

ε0
2

˚

Va

|E(r)|2dτ =
ε0
2

(
q

4πε0

)2{ˆ R

0

(
r2

R6

)
r2dr +

ˆ a

R

(
1

r4

)
r2dr

} 4πˆ

0

dΩ

=
q2

8πε0

{(
1

5R

)
r≤R

+

(
1

R
− 1

a

)
R<r≤a

}
I Surface integral over the augmented sphere Sa of radius a� R:

ε0
2

‹

Sa

[V (ar̂)E(ar̂)]·da =
ε0
2

(
q

4πε0a

)(
q

4πε0a2

)(
4πa2

)
=

(
q2

8πε0r

)
r=a
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I Extend Va to include ALL SPACE:

Va → V∞ ≡ R3 & Sa → S∞ =⇒ a→∞

I Con�guration energy (self-energy) of the charged sphere VR :

UE =
ε0
2

˚

Va→V∞

|E(r)|2 dτ +
ε0
2

‹

Sa→S∞

V (r)E(r) · da

= lim
a→∞

 q2

8πε0


1

5R
+

 1

R
−
�
���
0

1

a


+
�
�
��

0

q2

8πε0a


=

1

4πε0

(
3q2

5R

)
UE ≡ ε0

2

˚

All Space

|E(r)|2 dτ =
1

4πε0

(
3q2

5R

)
.

I Check by direct integration over the original charged sphere VR :

UE =
1

2

˚

VR

ρ(r)V (r) dτ =
ε0
2

(
q

4πε0

)2
R̂

0

(
r2

R6

)
r2dr

4πˆ

0

dΩ =
1

4πε0

(
3q2

5R

)
.
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q
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)2
R̂
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r2

R6
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r2dr
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4πε0

(
3q2

5R

)
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I Check by direct integration over the original charged sphere VR :

UE =
1

2

˚
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ε0
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(
q
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Self-energy of a Point Charge

I Electric �eld of a point charge placed at origin:

E(r) =
1

4πε0

q

r2
r̂

I Self-Energy:

W =
ε0
2

˚

All Space

|E(r)|2dτ =
ε0
2

(
q

4πε0

)2


ˆ ∞
0

(
1

r4

)
r2dr

π̂

0

sin θdθ

2πˆ

0

dφ


=

ε0
2

(
q

4πε0

)2{ˆ ∞
0

(
1

r4

)
4πr2dr

}
=

q2

8πε0

ˆ ∞
0

1

r2
dr

=
q2

8πε0
lim
δR→0

ˆ ∞
δR

1

r2
dr =

q2

8πε0
lim
δR→0

1

δR
⇒∞

I Since the radius δR of the point charge vanishes, the self-energy blow up!
I Point charges are idealized concepts. In reality δR 6= 0 (say, for electrons),

so Self-Energies (classically) of spherical objects of �nite radius δR is:

Wsphere =
1

4πε0

(
3q2

5 δR

)
→ �nite
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Interaction Energy of two Point Charges
Example

Find the Interaction energy of two charges, q1 and q2 located at r1 and r2,
respectively.

Net Electric �eld at any point r (Superposition Principle)

E(r) = E1(r) + E2(r) ,

Total Con�guration Energy:

W =
ε0
2

˚

All Space

|E(r)|2 dτ =
ε0
2

˚

All Space

|E1(r) + E2(r)|2 dτ

=
ε0
2

˚

All Space

|E1(r)|2 dτ +
ε0
2

˚

All Space

|E2(r)|2 dτ +
ε0
2

˚

All Space

2E1(r) · E2(r) dτ

Interaction Energy:

W int = ε0

˚

All Space

E1(r)·E2(r) dτ =
q1q2
16π2ε0

˚

All Space

(r − r1) · (r − r2)

|r − r1|3|r − r2|3
dτ =

q1q2
4πε0r12

⇒ This is exactly the work done by an external agent in bringing q2 from ∞ to
r2 with q1 already present at r1.
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=
ε0
2

˚

All Space

|E1(r)|2 dτ +
ε0
2

˚

All Space

|E2(r)|2 dτ +
ε0
2

˚

All Space

2E1(r) · E2(r) dτ

Interaction Energy:

W int = ε0

˚

All Space

E1(r)·E2(r) dτ =
q1q2
16π2ε0

˚

All Space

(r − r1) · (r − r2)

|r − r1|3|r − r2|3
dτ

=
q1q2

4πε0r12

⇒ This is exactly the work done by an external agent in bringing q2 from ∞ to
r2 with q1 already present at r1.
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Total Con�guration Energy & Density

I Interesting Question: Where is the total energy stored?

I ...in the charges?...in the �elds?

No unique answer to that question!

I The equation involves integration over all charge distributions:

UE =
1

2

˚

V

ρ(r)V (r) d3r

Z=⇒ suggests that the energy may be stored in the charges.

I The equation involves integration over all �eld con�gurations:

UE =
ε0
2

˚

All Space

E 2(r) d3r

Z=⇒ suggests that the energy may be stored in the �elds.

I It is conventional to de�ne an ENERGY DENSITY:

u(r) =
ε0
2
|E (r)|2

Z=⇒ a volume dv will contain Electrostatic Potential Energy equal to
u(r)dv .
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