
Physics II (PH 102)

Electromagnetism (Lecture 11)

Udit Raha

Indian Institute of Technology Guwahati

Feb 2020



Method of Images: Avoids solving PDEs in Boundary Valued Problems

Method of Images: Invented by Lord Kelvin in 1848, commonly used to
determine V , E and σ (surface charge density) due to static charge
con�gurations in the presence of a system of conductors.

1. Central idea: Map the original hard problem to another easier problem,
but satisfying the same boundary conditions. Then Uniqueness Theorem
guarantees the correctness of the solution.

2. Use Fact: All conducting surfaces are represented by equipotentials.

3. Strategy: All Real charge con�gurations and conducting surfaces are
replaced by the same Real charges, equipotential surfaces and some
additional �ctitious charges or charge distributions in the
conducting region, called Image Charges.
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The Classic Image Problem

Example

Suppose a point charge q is held at a distance d above a in�nite grounded
conducting plane. What is the Electrostatic Potential at point P in the
non-conducting region D above the conducting plane?

I The Electrostatic Potential V at point P ≡ (x , y , z) will be due to point
charge q and the induced surface charges.

I Problem is, we do not know σ(x , y) a priori ! How to determine V (x , y , z)
without directly knowing σ(x , y) on the conducting plane?
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In�nite grounded conducting plane

Set up a co-ordinate system with
xy -plane as the given in�nite
conducting plane and q lies on the
z-axis:

I Sol. Domain: D = {r | z > 0}
I Boundary Surfaces of D:

S = {xy -plane} ∪ S∞+

I Point Charge density:
ρ(r) = qδ3(r− r0); r0 = (0, 0, d)

I V (x , y , z) satis�es Poisson's Equation ∀r ∈ D:

∇2V (r) =
1

ε0
ρ(r)

I Boundary Condition on V in the original problem:

V (S) = 0, ∀S∈S .
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In�nite grounded conducting plane (contd.)

Real System is mapped on to the Fictitious System satisfying the same b.c.

Potential V (x , y , z) is ONLY needed
in non-conducting region D

The Real System

Potential V ′(x , y , z) de�ned in the
whole of R3

The Fictitious System
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In�nite grounded conducting plane (contd.)
Consider the Fictitious System:

I Charge distribution: ρ′(r) = qδ3(r − r0) + (−q)δ3(r + r0); r0 = (0, 0, d)

I Electrostatic Potential in all of R3 → Trivial to calculate!

V ′(x , y , z) =
1

4πε0

[
q√

x2 + y2 + (z − d)2
+

(−q)√
x2 + y2 + (z + d)2

]

I V ′(r) satis�es Poisson's Equation ∀r ∈ R3:

∇2V ′(r) =
1

ε0
ρ′(r)

I Boundary Condition: V ′(S′) = 0, ∀S′ ∈ S ′ = {xy -plane} ∪ S∞

1. Real charge con�guration in the common region D is identical:

ρ′(r)|D
z>0−−−→ ρ(r)

2. Boundary conditions in the common region D are identical:

∇2V ′ =
1

ε0
ρ′ over R3 z>0−−−→ ∇2V =

1

ε0
ρ over D ⊂ R3,

V ′ = 0 on S ′
z>0−−−→ V = 0 on S ⊂ S ′
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In�nite grounded conducting plane: Potential

I Uniqueness Theorem guarantees unique solution in D, i,e., V = V ′

I Thus, we found the solution to the original problem!

Electrostatic Potential in D: V (x , y , z) = V ′(x , y , z ≥ 0), i.e.,

V (x , y , z) =
q

4πε0

[
1√

x2 + y2 + (z − d)2
− 1√

x2 + y2 + (z + d)2

]

q

Grounded Conducting Plane

Note: We needn't bother that V = V ′ yields wrong result for z < 0!
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In�nite grounded conducting plane: Electric Field

Electrostatic Field in D: E(x , y , z) = E′(x , y , z ≥ 0) = −∇V (x , y , z), i.e.,

E(x , y , z) =
q

4πε0

[
x î+ y ĵ+ (z − d)k̂

(x2 + y2 + (z − d)2)3/2
− x î+ y ĵ+ (z + d)k̂

(x2 + y2 + (z + d)2)3/2

]

q

Grounded Conducting Plane

Note: Again we needn't bother that E(r) = E′(r) yields wrong result for z < 0!



In�nite grounded conducting plane: Surface Charge Density

I Normal to conductor: ±n̂ = ±k̂
I Induced surface charge density E⊥ = σ/ε0:

σ(x , y) = −ε0
∂V (x , y , z)

∂n

∣∣∣∣
z=0

≡ ε0E(x , y , z = 0) · k̂

σ(x , y) = −
q

2π

d

(x2 + y2 + d2)3/2
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Figure shows |σ|, for d = 1 and d = 0.1
=⇒ Maximum induced charge density is right below the point charge
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In�nite grounded conducting plane: Total Induced Charge

I Total induced surface charge: (with dA = dx dy = s ds dφ)

Qinduced =

¨

xy-plane

σ(x , y) dA

= −
∞̂

−∞

dx

∞̂

−∞

dy
qd

2π

1

(x2 + y2 + d2)3/2

= −qd

2π

ˆ ∞
0

s ds

(s2 + d2)3/2

ˆ 2π

0

dφ

= −qd

2π

[
− 1

(s2 + d2)1/2

]s=∞
s=0

(2π)

Qinduced = −q
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In�nite grounded conducting plane: Force on Real Charge q

Electric Field at P(x , y , z) in D, that we have already calculated:

E(x , y , z) =
1

4πε0

[
q

(
x î+ y ĵ+ (z − d)k̂

(x2 + y2 + (z − d)2)3/2

)
+ (−q)

(
x î+ y ĵ+ (z + d)k̂

(x2 + y2 + (z + d)2)3/2

)]

I The �rst (second) term is the �eld due to the Real Charge q (Image
Charge −q).

I Electric Field → Induced charges ≡ Electric Field → Image charge:

Einduced(x , y , z) ≡ Eimage(x , y , z) =
(−q)
4πε0

x î+ y ĵ+ (z + d)k̂

(x2 + y2 + (z + d)2)3/2

I Force on q due to conducting plane ≡ Force on q due to Image charge:

Fq = qEinduced(0, 0, d) ≡ qEimage(0, 0, d)

= − q2ẑ

4πε0(2d)2
→ Attractive force�

�
�


*QUESTION: Is there any di�erence in calculated physical quantities in non-
conducting region D, between those obtained from the Fictitious System
(charge-image) and those from the Real System (charge-conductor)?
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x î+ y ĵ+ (z + d)k̂

(x2 + y2 + (z + d)2)3/2

)]

I The �rst (second) term is the �eld due to the Real Charge q (Image
Charge −q).

I Electric Field → Induced charges ≡ Electric Field → Image charge:

Einduced(x , y , z) ≡ Eimage(x , y , z) =
(−q)
4πε0
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)]

I The �rst (second) term is the �eld due to the Real Charge q (Image
Charge −q).

I Electric Field → Induced charges ≡ Electric Field → Image charge:

Einduced(x , y , z) ≡ Eimage(x , y , z) =
(−q)
4πε0

x î+ y ĵ+ (z + d)k̂

(x2 + y2 + (z + d)2)3/2

I Force on q due to conducting plane ≡ Force on q due to Image charge:

Fq = qEinduced(0, 0, d) ≡ qEimage(0, 0, d)

= − q2ẑ

4πε0(2d)2
→ Attractive force�

�
�


*QUESTION: Is there any di�erence in calculated physical quantities in non-
conducting region D, between those obtained from the Fictitious System
(charge-image) and those from the Real System (charge-conductor)?



In�nite grounded conducting plane: Electrostatic Energy??

I Con�guration energy of Real System:
Work done by external agent to assemble the charge-conductor system is

W ext
1 (Real) = −

ˆ z=d

z=∞
Fq(z) · dz

=

ˆ d

∞

q2dz

4πε0(2z)2
= −1

2

(
q2

8πε0d

)

I Con�guration energy of Fictitious System:
Work done by external agent to assemble the charge-image system is

W ext
2 (Fictitious) = − q2

4πε0(2d)
= − q2

8πε0d
!

=⇒It takes only half the amount of energy to assemble the Real System!!

I Intuitive way of understanding this di�erence is to use the integral formula:

UE (Fictitious) =
ε0
2

˚

R3

E 2dv = 2 · ε0
2

˚

D

E 2dv = 2UE (Real).

=⇒The true domain of integration D is only half the domain R3 for the
Fictitious System.
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Another classic image problem: Grounded Conducting Sphere

Example

Consider a grounded conducting sphere of radius a and a charge q held at a
distance of d from the center. What is the potential in region D outside the
conducting sphere?

I Set up co-ordinate system with z-axis
along the line joining the center and q

I Domain: D ⊂ R3 = {r | r > a}
I Surface/s: S = {r | r = a} ∪ S∞

I Point charge density:

ρ(r) = qδ3
(
r − d k̂

)
I V (r) satis�es Poisson's Equation:

∇2V (r) =
1

ε0
ρ(r), ∀r ∈ D

I Boundary Condition for Potential:

V (S) = 0, ∀S ∈ S
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Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q′&

Equipotential surface =⇒ V ′(r) in R3 is identical to V (r) in D.

Note: You should never put the Image charge in D where you want to calculate
the potential. It should not mater if V ′ yields the wrong answer outside D!

I Location of q' is (0, 0, d ′) with d ′ < a

I Point charge densities:

ρ
′(r) =

[
qδ3(r − d k̂) + q′

δ
3(r − d ′̂k)

]∣∣∣
D

r>a−−→ ρ(r)

I V ′&V satisfy Poisson's Eqns. in R3 &D:

∇2V ′ =
ρ′

ε0

r>a−−→ ∇2V =
ρ

ε0

I V ′&V satisfy BC in R3 &D:

V ′(a, θ, φ) = V (a, θ, φ) = 0

V ′(S) = V (S) = 0 .

If such a q′ and d ' can be found, then we have nailed the problem!
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