Physics Il (PH 102)

Electromagnetism (Lecture 11)

Udit Raha

Indian Institute of Technology Guwahati

Feb 2020



Method of Images: Avoids solving PDEs in Boundary Valued Problems

Method of Images: Invented by Lord Kelvin in 1848, commonly used to
determine V, E and o (surface charge density) due to static charge
configurations in the presence of a system of conductors.
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Method of Images: Avoids solving PDEs in Boundary Valued Problems

Method of Images: Invented by Lord Kelvin in 1848, commonly used to
determine V, E and o (surface charge density) due to static charge
configurations in the presence of a system of conductors.

1. Central idea: Map the original hard problem to another easier problem,
but satisfying the same boundary conditions. Then Uniqueness Theorem
guarantees the correctness of the solution.

2. Use Fact: All conducting surfaces are represented by equipotentials.

3. Strategy: All Real charge configurations and conducting surfaces are
replaced by the same Real charges, equipotential surfaces and some
additional fictitious charges or charge distributions in the
conducting region, called /mage Charges.

Perfectly canducting plane V= 0 Eguipetential surface =0




The Classic Image Problem

Example

Suppose a point charge q is held at a distance d above a infinite grounded
conducting plane. What is the Electrostatic Potential at point P in the
non-conducting region D above the conducting plane?
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» The Electrostatic Potential V at point P = (x,y, z) will be due to point
charge g and the induced surface charges.



The Classic Image Problem

Example

Suppose a point charge q is held at a distance d above a infinite grounded
conducting plane. What is the Electrostatic Potential at point P in the
non-conducting region D above the conducting plane?

Zaxis
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Grounded Conducting FPlane

» The Electrostatic Potential V at point P = (x,y, z) will be due to point
charge g and the induced surface charges.

» Problem is, we do not know o(x, y) a priori! How to determine V(x,y, z)
without directly knowing o(x,y) on the conducting plane?



Infinite grounded conducting plane
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= > Point Charge density:
p(r) = q&6>(r—ro); ro = (0,0, d)
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Infinite grounded conducting plane

zaus Set up a co-ordinate system with
xy-plane as the given infinite
g conducting plane and g lies on the
D T ol Zz-axis:
a » Sol. Domain: D = {r|z > 0}

» Boundary Surfaces of D:

S = {xy-plane} U Soo+

Grounded Conducting FPlane

= > Point Charge density:
p(r) = g6*(r—ro); ro = (0,0, d)

> V(x,y, z) satisfies Poisson’s Equation Vr € D:

VAV() = (1)

> Boundary Condition on V in the original problem:

V(S) =0, VSeS.



Infinite grounded conducting plane (contd.)

Real System is mapped on to the Fictitious System satisfying the same b.c.
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Infinite grounded conducting plane (contd.)

Real System is mapped on to the Fictitious System satisfying the same b.c.
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The Real System

Potential V'(x, y, z) defined in the
whole of R?

The Fictitious System



Infinite grounded conducting plane (contd.)
Consider the Fictitious System:

» Charge distribution: p/(r) = q&6*(r —ro) + (—q)83(r +r0); ro = (0,0, d)
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» Charge distribution: p/(r) = q&6*(r —ro) + (—q)83(r +r0); ro = (0,0, d)

> Electrostatic Potential in all of R® — Trivial to calculatel
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Infinite grounded conducting plane (contd.)
Consider the Fictitious System:

» Charge distribution: p/(r) = q&6*(r —ro) + (—q)83(r +r0); ro = (0,0, d)

> Electrostatic Potential in all of R® — Trivial to calculatel

1 q (—-q)
V'(x,y,z) = 4
(x,y,2) 4reo \/x2—|—y2+(z—d)2 \/Xz +y2+(z+d)?

> V/(r) satisfies Poisson’s Equation Vr € R3:
, 1
V() = Lo
€0

> Boundary Condition: V/(S') =0, VS’ €S’ = {xy-plane} U S



Infinite grounded conducting plane (contd.)
Consider the Fictitious System:
> Charge distribution: p/(r) = g63(r — ro) + (—q)33(r +ro); ro = (0,0,d)
> Electrostatic Potential in all of R® — Trivial to calculate!
1 q (—-q)
V'(x,y,z) =
(x,y,2) 4reo \/x2—|—y2+(z—d)2 \/x2+y2+(z+d)2

> V/(r) satisfies Poisson’s Equation Vr € R3:
1
V2V/()) = /(1)
€o
> Boundary Condition: V/(S') =0, VS’ €S’ = {xy-plane} U S
1. Real charge configuration in the common region D is identical:
z>0
P ()l 2 plr)
2. Boundary conditions in the common region D are identical:

1
over R3 229, V2V = —p over D C RS,
€0

V2V = ipl

€0
V=0 onS 2% v=0 onScs



Infinite grounded conducting plane: Potential

» Uniqueness Theorem guarantees unique solution in D, i,e., V =V’



Infinite grounded conducting plane: Potential

» Uniqueness Theorem guarantees unique solution in D, i,e., V =V’

» Thus, we found the solution to the original problem!

Electrostatic Potential in D: V(x,y,z) = V'(x,y,z > 0), i.e.,
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Infinite grounded conducting plane: Potential

» Uniqueness Theorem guarantees unique solution in D, i,e., V =V’

» Thus, we found the solution to the original problem!

Electrostatic Potential in D: V(x,y,z) = V'(x,y,z > 0), i.e.,

q 1 1

V(x,y,z) = _
(x,y,2) Areg \/x2+y2+(zfd)2 \/Xz +y2 4+ (z+d)?

qe

ounae nduct i ng ane

Note: We needn’t bother that V = V' yields wrong result for z < 0!



Infinite grounded conducting plane: Electric Field

Electrostatic Field in D: E(x,y,z) = E'(x,y,z > 0) = =V V(x,y,2), i.e.,

E(x,y,z) =

q Xityit(z—dk  xityi+(z+dk
dmeo [ (x4 y2 4 (2= dP)? (@ 42+ (24 dP)

Note: Again we needn’t bother that E(r) = E’(r) yields wrong result for z < 0!



Infinite grounded conducting plane: Surface Charge Density
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1@ P Induced surface charge density £, = o/eo:
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Infinite grounded conducting plane: Surface Charge Density

B » Normal to conductor: +f = +k
1@ P Induced surface charge density £, = o/eo:
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Infinite grounded conducting plane: Surface Charge Density
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» Normal to conductor: +f = +k

P Induced surface charge density £, = o/eo:

kL
oV(x,y,z)
; oy) = e Y02
n n z=0
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d
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Figure shows |o|, for d =1 and d = 0.1
= Maximum induced charge density is right below the point charge



Infinite grounded conducting plane: Total Induced Charge

» Total induced surface charge: (with dA = dx dy = s ds d¢)

Qinduced = ﬂ U(X7 )/) dA

xy-plane
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Infinite grounded conducting plane: Total Induced Charge

» Total induced surface charge: (with dA = dx dy = s ds d¢)

o0 oo 1
Qinduced — ﬂ U(X7y) dA / dX / d 271' m

xy-plane
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Infinite grounded conducting plane: Total Induced Charge

» Total induced surface charge: (with dA = dx dy = s ds d¢)

[ee]
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Qinduced— ﬂ U(X7y) dA /dX / d QWW
xy-plane
__qd [*  sds /27r dé
= o . ($2+d2)3/2 0

qd 1 ]5 oo
B
27 |: (52+d2)1/2 e
Qinduced - —q



Infinite grounded conducting plane: Force on Real Charge g

Electric Field at P(x,y,z) in D, that we have already calculated:
1 g xi+yj—+ (z— )IA( >+(—q)< xi—&—yj—l—(z—l—d)ﬁ >:|
dmeo (2 +y2 + (2= d)?)*/? (2 +y2 + (z+d)?)*/2

» The first (second) term is the field due to the Real Charge g (Image
Charge —q).

E(x,y,z) =




Infinite grounded conducting plane: Force on Real Charge g

Electric Field at P(x,y,z) in D, that we have already calculated:
1 g xi+yj—+ (z— )IA( >+(—q)< xi—&—yj—l—(z—l—d)ﬁ >:|
dmeo (2 +y2 + (2= d)?)*/? (2 +y2 + (z+d)?)*/2

» The first (second) term is the field due to the Real Charge g (Image
Charge —q).

E(x,y,z) =

» Electric Field — Induced charges = Electric Field — Image charge:

— i+yi+(z+d)k
Eindllced(X7Y7 Z) = Eimage(xq}/, Z) = ( q) X 2 (Z 2)

Ao (x2 + y? + (2 + d)



Infinite grounded conducting plane: Force on Real Charge g

Electric Field at P(x,y,z) in D, that we have already calculated:

E(x,y,z) =

1 xi+yj+ (z — d)k - xi+yj+ (z+d)k
4o {q<(x2+y2+<z—d>2)“>+( q)<(x2+y 2 4 (z 1 d)2)/? ﬂ

» The first (second) term is the field due to the Real Charge g (Image
Charge —q).
» Electric Field — Induced charges = Electric Field — Image charge:

— i+yi+(z+d)k
Einduced(x,}/7 Z) = Eimage(Xq_y, Z) = ( q) X b4 (Z 2)

Ameo (x2 +y? + (2 +d)

» Force on q due to conducting plane = Force on g due to Image charge:

Fq = qunduced(07 07 d) = qumage((), 07 d)

9’2

W — Attractive force
TTED



Infinite grounded conducting plane: Force on Real Charge g

Electric Field at P(x,y,z) in D, that we have already calculated:
1 g xi+yj—+ (z— )IA( >+(—q)< xi—&—yj—l—(z—i—d)lz >:|
dmeo (2 +y2 + (2= d)?)*/? (2 +y2 + (z+d)?)*/2

» The first (second) term is the field due to the Real Charge g (Image
Charge —q).

E(x,y,z) =

» Electric Field — Induced charges = Electric Field — Image charge:

— i+yi+(z+d)k
Eindllced(X7Y7 Z) = Eimage(xq}/, Z) = ( q) X b4 (Z 2)

Ameo (x2 +y? + (2 +d)

» Force on q due to conducting plane = Force on g due to Image charge:

Fq = qunduced(07 07 d) = qumage((), 07 d)

9’2

 47eo(2d)?

*QUESTION: Is there any difference in calculated physical quantities in non-
conducting region D, between those obtained from the Fictitious System
(charge-image) and those from the Real System (charge-conductor)?

— Attractive force




Infinite grounded conducting plane: Electrostatic Energy?7?

» Configuration energy of Real System:
Work done by external agent to assemble the charge-conductor system is

z=d
We (Real) = — / Fu(2) - dz

z=00
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Infinite grounded conducting plane: Electrostatic Energy?7?

» Configuration energy of Real System:
Work done by external agent to assemble the charge-conductor system is

z=d d 2 2
_ dp= [ Gz _ 1 @
W™ (Real) = / Fo(z) - dz _/ 4meo(22)2 2 (87T60d)

z=00 ¢S]

» Configuration energy of Fictitious System:
Work done by external agent to assemble the charge-image system is

q2 q2 |

~ 4reo(2d) ~ " 8reod

W5 (Fictitious) =

=1t takes only half the amount of energy to assemble the Real System!!



Infinite grounded conducting plane: Electrostatic Energy?7?

» Configuration energy of Real System:
Work done by external agent to assemble the charge-conductor system is

z=d d 2 2
_ dp= [ Gz _ 1 @
W™ (Real) = / Fo(z) - dz _/ 4meo(22)2 2 (87T60d)

z=00 ¢S]

» Configuration energy of Fictitious System:
Work done by external agent to assemble the charge-image system is

q2 q2 |

B 4meo(2d) - 8meod

W;5*(Fictitious) =

=1t takes only half the amount of energy to assemble the Real System!!

» Intuitive way of understanding this difference is to use the integral formula:

Ue (Fictitious) = %0 /// E’dv=2. %" /// E*dv = 2Ug(Real).
R3 D

== The true domain of integration D is only half the domain R* for the
Fictitious System.



Another classic image problem: Grounded Conducting Sphere

Example
Consider a grounded conducting sphere of radius a and a charge g held at a

distance of d from the center. What is the potential in region D outside the

conducting sphere?
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along the line joining the center and ¢
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Another classic image problem: Grounded Conducting Sphere

Example
Consider a grounded conducting sphere of radius a and a charge g held at a

distance of d from the center. What is the potential in region D outside the

conducting sphere?

> Set up co-ordinate system with z-axis
along the line joining the center and g

» Domain: D C R® = {r|r > a}

DcCR?
» Surface/s: S ={r|r=a} U5,
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Another classic image problem: Grounded Conducting Sphere

Example

Consider a grounded conducting sphere of radius a and a charge g held at a
distance of d from the center. What is the potential in region D outside the
conducting sphere?

> Set up co-ordinate system with z-axis
along the line joining the center and g

» Domain: D C R® = {r|r > a}

» Surface/s: S ={r|r=a} U5,

» Point charge density:

p(r) = q6° <r — dlA<>
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Another classic image problem: Grounded Conducting Sphere

Example

Consider a grounded conducting sphere of radius a and a charge g held at a
distance of d from the center. What is the potential in region D outside the
conducting sphere?

> Set up co-ordinate system with z-axis
along the line joining the center and g

D B3 » Domain: D C R® = {r|r > a}
» Surface/s: S ={r|r=a} U5,
» Point charge density:
‘q—"z-axis

p(r) = q6° <r — dlA<>
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Potential V/(x,y.z) is needed in D

> V/(r) satisfies Poisson’s Equation:

VV(r) = l,o(r), VreD
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Another classic image problem: Grounded Conducting Sphere

Example
Consider a grounded conducting sphere of radius a and a charge g held at a
distance of d from the center. What is the potential in region D outside the

conducting sphere?
> Set up co-ordinate system with z-axis
along the line joining the center and g
D B3 » Domain: D C R® = {r|r > a}
» Surface/s: S ={r|r=a} U5,
» Point charge density:

T p(r) = q53 <r — dlA<>

A g

/

Potential V/(x,y.z) is needed in D

> V/(r) satisfies Poisson’s Equation:

VV(r) = lp(r), VreD
€o

» Boundary Condition for Potential:
The Real System
V(S)=0, vSe S



Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q’' &
Equipotential surface = V'(r) in R? is identical to V/(r) in D.

Note: You should never put the Image charge in D where you want to calculate
the potential. It should not mater if V'’ yields the wrong answer outside D!

z-axis

equipotential

Potential V'(x, y,z) defined in R?

The Fictitious System
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Replace Real System with Fictitious System: Real charge q, Image charge q’' &
Equipotential surface = V'(r) in R? is identical to V/(r) in D.

Note: You should never put the Image charge in D where you want to calculate
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> Location of g’ is (0,0,d’) with d’' < a

z-axis

equipotential

Potential V'(x, y,z) defined in R?

The Fictitious System



Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q’' &
Equipotential surface = V'(r) in R? is identical to V/(r) in D.

Note: You should never put the Image charge in D where you want to calculate
the potential. It should not mater if V'’ yields the wrong answer outside D!
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» Point charge densities:
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Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q’' &
Equipotential surface = V'(r) in R? is identical to V/(r) in D.

Note: You should never put the Image charge in D where you want to calculate
the potential. It should not mater if V'’ yields the wrong answer outside D!

> Location of g’ is (0,0,d’) with d’' < a
» Point charge densities:
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> V'&V satisfy Poisson’s Eqns. in R? & D:
o vay = e ey P
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Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q’' &

Equipotential surface = V'(r) in R? is identical to V/(r) in D.

Note: You should never put the Image charge in D where you want to calculate
the potential. It should not mater if V'’ yields the wrong answer outside D!

equipotential

Potential V'(x, y,z) defined in R?

The Fictitious System

> Location of g’ is (0,0,d’) with d’' < a
» Point charge densities:

P) = [0 = dk) + '8 = dT] | =2 p(r)
> V'&V satisfy Poisson’s Eqns. in R? & D:

vy = foe gry P
€0 €0

> V'&V satisfy BC in R* & D:

V'(a,0,¢) = V(a,0,4) =0
V/(S) = V(S) =0



Grounded Conducting Sphere

Replace Real System with Fictitious System: Real charge q, Image charge q’' &
Equipotential surface = V'(r) in R? is identical to V/(r) in D.

Note: You should never put the Image charge in D where you want to calculate
the potential. It should not mater if V'’ yields the wrong answer outside D!

> Location of g’ is (0,0,d’) with d’' < a
» Point charge densities:

P = [a8 = k) + '8 — @] |2 o)

> V'&V satisfy Poisson’s Eqns. in R? & D:

vivi = Fore ey P

€0 €0

S > V'&V satisfy BC in R? & D:
V'(a,60,¢) = V(a,0,6) = 0

Potential V'(x, y,z) defined in R? V/(S) = V(S) =0

The Fictitious System

If such a ¢’ and d’ can be found, then we have nailed the problem!
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