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Method of Separation of Variables

I Method of SEPARATION OF VARIABLES is one of the most widely used
analytical techniques to solve Partial Di�erential Equations (PDEs).

I Separable Ansatz:

Solution of the Laplace's Equation is expressed either as a sum or product of

several smooth functions, each being only dependent upon a single independent

variable, i.e.,

V (x , y , z) = X (x) + Y (y) + Z(z) or V (x , y , z) = X (x)Y (y)Z(z).

I This method does not ensure the most general solutions, but rather yields a
sub-class of all possible solutions that are separable.

I Uniqueness Theorem: For given Set of Boundary Conditions it guarantees
the correct answer irrespective to type to ansatz or methodology.

I Linearity property of Laplace's solution: If V1,V2,V3, · · · satisfy Laplace's
equation, so does any linear combinations of them, i.e., if

V = α1V1 + α2V2 + α3V3 + · · ·

where αi are arbitrary real constants, then

∇2V = α1��
�*0

∇2V1 + α2��
�*0

∇2V2 + α3��
�*0

∇2V3 + · · · = 0.
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Solution via Additive Ansatz
Solve the 2D Laplace's Equation in Cartesian co-ordinates:

∇2V (x , y) =
∂2V (x , y)

∂x2
+
∂2V (x , y)

∂y2
= 0

I Try Additive ansatz: V (x , y) = X (x) + Y (y); X ,Y → smooth functions.

d2X (x)

dx2
+

d2Y (y)

dy2
= 0 =⇒ X ′′(x) + Y ′′(y) = 0

I X ′′(x) andY ′′(y) can not add to zero ∀ (x , y), unless they are consts., i.e.,

2 ODEs : X ′′(x) = −Y ′′(y) = α⇒ const. ∈ R

Solutions to 2 ODEs (α, β, γ, δ or ρ ∈ R determined from b.c.)

X (x) =
1

2
αx2 + βx + δ

Y (y) = −
1

2
αy2 + γy + ρ

V (x , y) = X (x) + Y (y) ≡
1

2
α
(
x2 − y2

)
+ βx + γy + κ�



�
	This Additive Ansatz yields problematic unphysical solutions for potentials due

to localized charge distributions, as they do not die away as x , y → ±∞!
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Solution via Multiplicative Ansatz
I Try Product ansatz: V (x , y) = X (x)Y (y); X ,Y → smooth functions.

∇2V (x , y) =
d2X (x)

dx2
Y (y)+X (x)

d2Y (y)

dy2
= 0

=⇒ X ′′(x)

X (x)
+

Y ′′(y)

Y (y)
= 0

I X ′′(x)/X (x) andY ′′(y)/Y (y) can not add to zero ∀ (x , y), unless,

2 ODEs : − 1

X (x)

d2X (x)

dx2
=

1

Y (y)

d2Y (y)

dy2
= ±k2 → const. ∈ R

=⇒ Single 2ndorder PDE gets reduced to two 2nd ODEs. The choice ± is
dictated by the speci�c nature of the problem and b.c.

'

&

$

%

I E.g., +k2 choice leads to the full solution as combinations of oscillatory
& exponential functions,

V (x , y) = X (x)Y (y) = (A cos kx + B sin kx) (C cosh ky + D sinh ky)︸ ︷︷ ︸ ,
const.e−ky

=⇒ yields correct physical nature of potentials due to localized
distributions.
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Hyperbolic Functions
They are analogs of of ordinary trigonometrical functions:

cosh x =
exp(x) + exp(−x)

2

sinh x =
exp(x)− exp(−x)

2

tanh x =
sinh x

cosh x
=

exp(2x)− 1

exp(2x) + 1



Properties of Solutions obtained via Variable Separable Ansatz

There exists a complete and orthonormal set of basis functions S for expansion
of any function, say, X (x), obtained as a solution to the Laplace's equation via
the separation of variables ansatz:

I Completeness: If the solution function X (x) de�ned over the given
domain, x ∈ D[a, b] ⊂ R, can be expanded as arbitrary linear combination

of so-called �basis functions� fn(x) :

X (x) =
∞∑
n=0

Cn fn(x) ; Cn ∈ R & fn(x) ∈ S .

Fact: The Basis Functions fn(x) ∈ S de�ned on domain D[a, b] ⊂ R span
an ∞-dimensional vector space of solutions, F = {X (x) | x ∈ D[a, b] ⊂ R},
termed as a FUNCTION SPACE, where,

S = {fn(x) | n ∈ Z, x ∈ D[a, b] ⊂ R}

I Orthonormality of Basis: If the set of functions, fn(x) ∈ S de�ned on
the domain D[a, b] ⊂ R is such that their convolution :

bˆ

a

fn(x) fm(x) dx = const. δnm =

{
const. if m = n

0 if m 6= n
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Basis Set of a Function Space of Laplace's Solutions

Example

Sine and Cosine functions can form a complete and orthonormal basis set S in
a certain domain, say, x ∈ D[γ, γ + 2l ] ⊂ R :

S =
{
sin
(nπx

l

)
, cos

(nπx
l

)
| n ∈ Z, x ∈ D[γ, γ + 2l ] ⊂ R

}

I Orthonormality:(Take e.g., γ = 0, 2l = 2π)
γ+2lˆ

γ

sin
(nπx

l

)
sin
(mπx

l

)
dx = lδnm,

γ+2lˆ

γ

cos
(nπx

l

)
cos
(mπx

l

)
dx = lδnm,

γ+2lˆ

γ

sin
(nπx

l

)
cos
(mπx

l

)
dx = 0, where m, n ∈ Z.

I Completeness: Any arbitrary Harmonic Function can be expanded in an
in�nite series of Sines and Cosines basis functions. Such a series is termed
as a Fourier Expansion.
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Fourier Series: Topic of Harmonic Analysis
The Fourier Expansion is valid for all Harmonic Functions f (x) because they
are Piecewise Regular in a given domain D, i.e.,
I f (x) must be single valued in D.
I f (x) can atmost have �nite number of �nite discontinuities in D.
I f (x) must have �nite number of minima or maxima in D.

These are termed as the DIRICHLET's conditions of su�ciency.

A Fourier Expansion is de�ned as an expansion of a Piecewise Regular function,
say f (x), de�ned over a Principal domain D ≡ [γ ≤ x ≤ (γ + 2l)] ∈ R and
having Period T = 2l outside this interval D, in an in�nite series of sine and
cosine functions:

f (x) =
a0
2

+
∞∑

m=1

[
am cos

(mπx
l

)
+ bm sin

(mπx
l

)]
.

The real coe�cients of this series are called Fourier Coe�cients:

an =
1

l

γ+2lˆ

γ

f (x) cos
(nπx

l

)
dx ; n ≥ 0

bn =
1

l

γ+2lˆ

γ

f (x) sin
(nπx

l

)
dx ; n ≥ 1.
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Fourier Trick: Fourier Coe�cients

f (x) =
a0
2

+
∞∑

m=1

[
am cos

(mπx
l

)
+ bm sin

(mπx
l

)]

First, multiplying both sides by cos
(
nπx
l

)
and integration over D[γ, γ + 2l ]

´ γ+2l

γ
f (x) cos

(
nπx
l

)
dx=

∑∞
m=1

´ γ+2l

γ

am cos
(
nπx
l

)
cos
(
mπx
l

)
+
���

���
���

�: 0

bm cos
(
nπx
l

)
sin
(
mπx
l

) dx

´ γ+2l

γ
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Fourier Harmonic Analysis

Example

Does the function satisfy DIRICHLET's conditions to be Fourier Expanded?



Fourier Coe�cients: Here, D[γ = 0, γ + 2l = 2π]



Fourier Coe�cients



f (θ) =

{
A when 0 < θ < π

−A when π < θ < 2π
=

4A

π

n=∞∑
n=1

1

2n − 1
sin [(2n − 1)θ]





2D Boundary Valued Problem in Cartesian System

Example

Two in�nite grounded metal plates lie parallel to the xz-planes, one at y = 0
and the other at y = π. The left end is closed o� with an in�nite strip
insulated from the two plates and maintained at a speci�c potential V0(y).
Find the potential inside the �slot�.



Boundary Conditions

I Solve Laplace's Equation for potential V (x , y , z) in the �Slot� D:

D = {(x , y , z)|x > 0, 0 < y < π,−∞ < z <∞}

I Region D enclosed by 6 Boundary surfaces:
I x = 0 and x =∞
I y = 0 and y = π
I z = ±∞

I Translational symmetry in z : 2-dim Problem → V is independent of z :

V (x , y , z)
2−dim→ V (x , y)

I 4 Boundary Conditions:

(i) V (x , y = 0, z) = 0 ∀x , z
(ii) V (x , y = π, z) = 0 ∀x , z
(iii) V (x = 0, y , z) = V0(y) ∀z
(iv) V (x →∞, y , z) = 0 ∀y , z

I No Boundary Conditions needed for the surfaces at z = ±∞.
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Separation of Variables

Example



Applying Boundary Conditions



Use of Fourier Trick to �nd Ck :
I We obtained the following Fourier Series:

V0(y) =
∞∑
k=0

Ck sin ky .

Multiplying both sides by sin py and integrating between 0 ≤ y ≤ π:
π̂

0

V0(y) sin py dy =

π̂

0

[
∞∑
k=0

Ck sin ky sin py

]
dy

=
∞∑
k=0

Ck

 π̂

0

sin ky sin py dy


=

∞∑
k=0

Ck

[π
2
δpk
]
=
π

2
Cp

Cp =
2

π

π̂

0

V0(y) sin py dy .�

�

�

�
General Solution: V (x , y) =

∞∑
k=1

 2

π

π̂

0

V0(y) sin ky dy

 e−kx sin ky



Final Solution for b.c. V0(y) = V0 = const.

Example



Solution with b.c. V0(y) = V0 = 1
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Equipotentials with b.c. V0(y) = V0 = 1
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Surface charge density with V0(y) = V0 = 1
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Induced charge density on the x = 0 plane or the end strip

σ
(
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π
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= ε0
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x=0



Final Solution for V0(y) = V0 = 1
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3D Laplace's Equation in Cartesian System



Separation of Variables & Boundary Conditions



Use of Fourier Trick



Final Solution for b.c. V0(y , z) = V0 = const.

Example
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