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Method of Separation of Variables

» Method of SEPARATION OF VARIABLES is one of the most widely used
analytical techniques to solve Partial Differential Equations (PDEs).
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» Method of SEPARATION OF VARIABLES is one of the most widely used
analytical techniques to solve Partial Differential Equations (PDEs).

» Separable Ansatz:

Solution of the Laplace’s Equation is expressed either as a sum or product of
several smooth functions, each being only dependent upon a single independent
variable, i.e.,

Vixy.2) = X() + Y +2(z)  or  V(xy.2) = X()Y()Z(2).

» This method does not ensure the most general solutions, but rather yields a
sub-class of all possible solutions that are separable.

» Uniqueness Theorem: For given Set of Boundary Conditions it guarantees
the correct answer irrespective to type to ansatz or methodology.
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» Method of SEPARATION OF VARIABLES is one of the most widely used
analytical techniques to solve Partial Differential Equations (PDEs).

» Separable Ansatz:
Solution of the Laplace’s Equation is expressed either as a sum or product of
several smooth functions, each being only dependent upon a single independent

variable, i.e.,
Vi 2) = X()+ Y +2(2)  or  V(xy.z) = X()Y(Y)Z(2).

» This method does not ensure the most general solutions, but rather yields a
sub-class of all possible solutions that are separable.

» Uniqueness Theorem: For given Set of Boundary Conditions it guarantees
the correct answer irrespective to type to ansatz or methodology.

» Linearity property of Laplace’s solution: If Vi, V5, V3, - - satisfy Laplace's
equation, so does any linear combinations of them, i.e., if

V=aiVi+aVot+asVs+---

where «; are arbitrary real constants, then
0 0 0
V2V = s PVh + a2V + as¥2V5 + - = 0.



Solution via Additive Ansatz
Solve the 2D Laplace’s Equation in Cartesian co-ordinates:
_ PV(xy)

*V(x,y)
2 )
VV(x,y) = o + a7 0
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Y(y) = —anz +y+p
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Solution via Additive Ansatz
Solve the 2D Laplace’s Equation in Cartesian co-ordinates:

PV(x,y) N PV(x,y)

2 —
V V(X7.y) - axg ayz

0

> Try Additive ansatz: V/(x,y) = X(x) + Y(y); X, Y — smooth functions.

d*X(x) n d*Y(y)
dx? dy?

=0 = X'"(x)+Y"'(y)=0
> X"(x) andY”(y) can not add to zero V (x, y), unless they are consts., i.e.,
20DEs: X"(x)=-Y"(y) =a = const. € R

Solutions to 2 ODEs («, 3,7, d or p € R determined from b.c.)

1
X(x) = Eaxz—l—ﬁx—l—&
1 5
Y(y) = 5y +y+p
1
V) =X +Y0) = Sal(d=y*)+Bxtay+r

This Additive Ansatz yields problematic unphysical solutions for potentials due
to localized charge distributions, as they do not die away as x,y — doo!




Solution via Multiplicative Ansatz
» Try Product ansatz: V(x,y) = X(X)Y(y); X, Y — smooth functions.

d*X(x)

()_
Wy rxe Y =0

V3V(x,y) =




Solution via Multiplicative Ansatz
» Try Product ansatz: V(x,y) = X(X)Y(y); X, Y — smooth functions.

():°:>)><<”((XX))

X (x)
dx?

Y'(y)

VN = Y0

=0

—+




Solution via Multiplicative Ansatz
» Try Product ansatz: V(x,y) = X(x)Y(y); X, Y — smooth functions.

YY) g X0, Y

dy? X(x) Y(y)
> X"(x)/X(x) andY”(y)/Y(y) can not add to zero V(x, y), unless,

1 PX() 1 PY()
X(x) dx2 " Y(y) dy?

d*X(x)
dx?

Y(y)+ X(x) =0

V3V(x,y) =

= +k* = const. € R

2 ODEs :

— Single 2™order PDE gets reduced to two 2™ ODEs. The choice = is
dictated by the specific nature of the problem and b.c.



Solution via Multiplicative Ansatz
» Try Product ansatz: V(x,y) = X(x)Y(y); X, Y — smooth functions.

VEV(x,y) = djiﬁx’ Y(y)+X(X)d;;£y) =0 = %—F ’;((yy)) -0

> X"(x)/X(x) andY"(y)/Y(y) can not add to zero V (x, y), unless,

1 d°X(x) 1 d?Y(y)

— - = +k® t.eR
X(x)  dx? YO) dy? —» const. €

2 ODEs :

— Single 2™order PDE gets reduced to two 2™ ODEs. The choice = is
dictated by the specific nature of the problem and b.c.

> E.g., +k? choice leads to the full solution as combinations of oscillatory
& exponential functions,
V(x,y) = X(x)Y(y) = (Acos kx + B'sin kx) (C cosh ky + Dsinh ky),

const.e™ ¥
= yields correct physical nature of potentials due to localized
distributions.




Hyperbolic Functions

They are analogs of of ordinary trigonometrical functions

o 2P() + exp(—x)
2

L () — exp(—x)
2

tanh x — sinhx _ exp(2x) — 1

coshx  exp(2x)+1

1
1
1
!

y = sinh(x)
y = cosh(x)
----- y = tanh(x)
1o 1




Properties of Solutions obtained via Variable Separable Ansatz

There exists a complete and orthonormal set of basis functions S for expansion
of any function, say, X(x), obtained as a solution to the Laplace’s equation via
the separation of variables ansatz:
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There exists a complete and orthonormal set of basis functions S for expansion
of any function, say, X(x), obtained as a solution to the Laplace’s equation via
the separation of variables ansatz:

> Completeness: If the solution function X(x) defined over the given

domain, x € D[a, b] C R, can be expanded as arbitrary linear combination
of so-called “basis functions” f,(x) :

X(X):iCnfn(x); CheR & fi(x)€Ss.

Fact: The Basis Functions f,(x) € S defined on domain D[a, b] C R span
an oco-dimensional vector space of solutions, F = {X(x)| x € D[a, b] C R},
termed as a FUNCTION SPACE, where,

S={fi(x)|n€Z, x €D[a,b] CR}




Properties of Solutions obtained via Variable Separable Ansatz

There exists a complete and orthonormal set of basis functions S for expansion
of any function, say, X(x), obtained as a solution to the Laplace’s equation via
the separation of variables ansatz:

> Completeness: If the solution function X(x) defined over the given

domain, x € D[a, b] C R, can be expanded as arbitrary linear combination
of so-called “basis functions” f,(x) :

X(X):iCnfn(x); CeR & fi(x)esS.

Fact: The Basis Functions f,(x) € S defined on domain D[a, b] C R span
an oco-dimensional vector space of solutions, F = {X(x)| x € D[a, b] C R},
termed as a FUNCTION SPACE, where,

S={fi(x)|n€Z, x €D[a,b] CR}

> Orthonormality of Basis: If the set of functions, f,(x) € S defined on
the domain DJ[a, b] C R is such that their convolution :

const. if m=n

b
fo(x) fmn(x) dx = t. Opm =
/ (x) fm(x) dx = cons { 0 i mo



Basis Set of a Function Space of Laplace’s Solutions

Example
Sine and Cosine functions can form a complete and orthonormal basis set S in
a certain domain, say, x € D[y,y+2/[] CR:

S= {sin (nilx) , COS (?) | n€Z, x €D[y,vy+2/] CR}



Basis Set of a Function Space of Laplace’s Solutions
Example

Sine and Cosine functions can form a complete and orthonormal basis set S in
a certain domain, say, x € D[y,y+2/[] CR:

S= {sin (nilx) , COS (?) | n€Z, x €D[y,vy+2/] CR}

» Orthonormality:(Take e.g., v =0, 2/ = 27)
y+20
/ sin (ﬂ) sin (m) dx = 16pm,
! /
5
y+21/

/ cos (MTX) cos (?) dx = 16mm,
/ sin (?) cos

v

(m;rx) dx = 0, where m,n € Z.

» Completeness: Any arbitrary Harmonic Function can be expanded in an
infinite series of Sines and Cosines basis functions. Such a series is termed
as a Fourier Expansion.



Fourier Series: Topic of Harmonic Analysis

The Fourier Expansion is valid for all Harmonic Functions f(x) because they
are Piecewise Regular in a given domain D, i.e.,

> f(x) must be single valued in D.
> f(x) can atmost have finite number of finite discontinuities in D.
» f(x) must have finite number of minima or maxima in D.

These are termed as the DIRICHLET s conditions of sufficiency.
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having Period T = 2/ outside this interval D, in an infinite series of sine and
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Fourier Series: Topic of Harmonic Analysis

The Fourier Expansion is valid for all Harmonic Functions f(x) because they
are Piecewise Regular in a given domain D, i.e.,

> f(x) must be single valued in D.

> f(x) can atmost have finite number of finite discontinuities in D.
» f(x) must have finite number of minima or maxima in D.
These are termed as the DIRICHLET s conditions of sufficiency.

A Fourier Expansion is defined as an expansion of a Piecewise Regular function,
say f(x), defined over a Principal domain D = [y < x < (v +2/)] € R and

having Period T = 2/ outside this interval D, in an infinite series of sine and
cosine functions:

:?O—&—i[amcos( )—I—b sm<m7x>}.

m=1

The real coefficients of this series are called Fourier Coefficients:

~y+2/

a, = 7/f(x)cos(nilx) dx ; n>0
¥
'y+.2/

by = —/ f(x)sin(m/rx> dx ; n>1.




Fourier Trick: Fourier Coefficients

f(x) = % +§: [amcos (m;rx) + bmsin (m;rx)}
m=1




Fourier Trick: Fourier Coefficients

=+ Z [am cos (T75) + bmsin (77 )]

nmwx
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Fourier Trick: Fourier Coefficients

=+ Z [am cos (T75) + bmsin (77 )]

nmwx

First, multiplying both 5|des by cos ("7*) and integration over D[y, y + 2/]

0
ﬁﬁﬂwﬂ)WZMW{MM/MWW@j&%ﬁﬁﬂW

f;ﬁz’ f(x) cos (n7lr>() dx= 3% am [fv+2/ cos (nﬂ'x) cos (mﬂX) dx] I
an =7 ffrz’ f(x)cos (%7%) dx ; VYn>1

Similarly, multiplying both sides by sin ("’”‘) and integration over D[y, v + 2/]

ST ) sin (7)o = S5 b 71 sin (75) s (75) di| = S5, tbwbam = by
by =73 [T F(x)sin (%) dx ; Vn>1




Fourier Trick: Fourier Coefficients

=+ Z [am cos (T75) + bmsin (77 )]

nmwx

First, multiplying both 5|des by cos ("7*) and integration over D[y, y + 2/]

f;’ﬂl f(x)cos (7%) dx=>" f:”l am cos (7% cos (M=

f;ﬁz’ f(x) cos (n7lr>() dx= 3% am [fv+2/ cos (nﬂ'x) cos (mﬂX) dx] I
an =7 ffrz’ f(x)cos (%7%) dx ; VYn>1

Similarly, multiplying both sides by sin ("’”‘) and integration over D[y, v + 2/]

f3+2/ F(x)sin (%7%) dx = 30, b [f7+2/ sin (%7) } = lomom = by
b, = f”“’ f(x)sm("”) 7 Vn>1

Finally, simply integrating both sides over D[,y + 2/]

0 0
[ 00d = e S ) [amsost =T a7 ox

f;’“' f(x)dx = lag

=3 [T f(x) dx



Fourier Harmonic Analysis
Example

Find the Fourier series of the following periodic function
(Square Pulse)

i)

@) = 4 when 0<8<x
-4 when T<8<27

f(6+27)=£(6)

Does the function satisfy DIRICHLET's conditions to be Fourier Expanded?



Fourier Coefficients: Here, D[y = 0, v+ 2/ = 27]

aa=%fﬂ_€)d€ a =§j fl8)cosnsde
=LH,: f (5)0’54]'::1‘“ (ﬁ}dﬁ} ﬂj A’msnﬁa’ﬁ+j - 4)cos nﬁa’ﬁ}
=%“:Adﬁ+ﬁr—ﬁd$} l[ﬁmn€]+l[—ﬁdﬂnﬁf=ﬂ
x noly o n
-0

1=

bﬁl f(8)sin n8dé
Tee :

1
T
1
l _Acosn§:| +l|}{ msm?:|
T R i

T 1

n

[
[[:Am n5d8+[ (~ A)sin ngarg}

[— cnsn:r+c050+coslmr—msmr]
niT



Fourier Coefficients

A
b = —[—cosnx+c050+c052n:r—cosn:r]

R

T
A
== [1+1+1+1]
T
4.4 .
b, =—— when nis odd
1T

A
b ——[—ces T +cosO+cos2nt —cosnﬂ
HT

A
=— |-1+1+1-1
M[ +1+1-1]

b =0 when n is even



Therefore, the corresponding Fourierseriesis

/ s 5
f(@)= e ‘ s 0+ Lsin 3{-}+ésin 56+ Lsi T§+---J
T 3 5 7

In writing the Fourier seriesit is not possible to
considerinfinite numberof terms (HARMONICS)
for practical reasons. The questiontherefore,is

— how many harmonics do we consider?

n=oo

A when 0<fO<m 4A ' 1

2n—1

— sin[(2n — 1)6]
—A when 7 <60 <27 us

n=1



The red curve was drawn with 20 harmonics and
the blue curve was drawn with 4 harmonics.

=]
=
-

=Y
&a

10



2D Boundary Valued Problem in Cartesian System

Example

Two infinite grounded metal plates lie parallel to the xz-planes, one at y =0
and the other at y = 7. The left end is closed off with an infinite strip
insulated from the two plates and maintained at a specific potential Vo(y).
Find the potential inside the “slot”.




Boundary Conditions

» Solve Laplace's Equation for potential V(x,y, z) in the “Slot” D:
D=A{(x,y,z)[x>0,0<y <7 —00<z<o0}
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» Region D enclosed by 6 Boundary surfaces:
» x=0and x =00
> y=0andy=m
> z=+4c



Boundary Conditions

» Solve Laplace's Equation for potential V(x,y, z) in the “Slot” D:
D=A{(x,y,z)[x>0,0<y <7 —00<z<o0}

» Region D enclosed by 6 Boundary surfaces:
» x=0and x =00
> y=0andy=m
> z=+4c

» Translational symmetry in z: 2-dim Problem — V is independent of z:

V(x,y,z) 2qm V(x,y)



Boundary Conditions

Solve Laplace's Equation for potential V/(x, y, z) in the “Slot”" D:

v

D=A{(x,y,z)[x>0,0<y <7 —00<z<o0}

v

Region D enclosed by 6 Boundary surfaces:
» x=0and x =00
> y=0andy=m
> z=+4c

Translational symmetry in z: 2-dim Problem — V is independent of z:

v

V(x,y,z) 2qm V(x,y)

v

4 Boundary Conditions:
(i) V(x,y =0,z) =0 Vx, z
(if) V(x,y=mz)=0 Vx, z
(i)  V(x=0,y,z) = V(y) Vz
(iv) V(x = 00,y,z) =0 Vy,z
» No Boundary Conditions needed for the surfaces at z = too.



Separation of Variables

f________———E conducting plates

/& a strip @) V(y=0)=0
(") I’(} — IT) =0

) (i) ¥ (= 0) =T, ()

(iv) Flix—=o)—>0

/ ] v &l :
e Laplace’s eq. _+ =0 set | F(x.1)=X(0F ()
& &t
18x 18y .
X éx’ Y &'y
& @fkm only ¥ ;@Er arly
¥ o5 d*y
—=kX . = kY
dx- it

X(x)=Ade™ + Be ™ Y(y)=Csinky+ Dcosky

|V(x,_)') = (Ae™ + Be™) (Csinky + Dcosig')‘




Applying Boundary Conditions

B.C. (V) Flx—w)—=0 =
=
BLC. () rp=0=0 =
=

BC. (i) Vy=m)=0 =

A=0 (where we take £ =0)

V(x.3) = e (Csin ky+Dcosky) (B is absorbed)
D=0

V(x. ) =Ce ™ sinky

sinkr=0 = |k=123- €N|

Fixy)= % C,.-{e_h sin gy

k=1

Principle of superposition due to Linearity of
Laplace’s Equation

B.C. (ii) ¥(x=0)=V;(») = Afourierseries withy =0and /=72

V,(¥) = Z Cy sinky
k=1

2 .
Cr ==l Vo(»)sinky dy
/4




Use of Fourier Trick to find Cg:

> We obtained the following Fourier Series:

Multiplying both sides by sin py and integrating between 0 < y < 7:

s

/ Vo(y) sin py dy
0

Vo(y)

= Z Ci sin ky.
k=0

/[Z C sin ky sinpy:| dy

o Lk=0

Ck /sinky sin py dy
0

e 10

T ™
G |30n] =56
k=0
2 7 :
;/Vg(y) sin py dy.
0

General Solution:

Z g/ y) sinkydy| e
T

70

k=1

*sin ky




Final Solution for b.c. Vp(y) = Vo = const.

Example

Faor F,(y) =V, =constant

Wy 7
Ck_?.l-ﬂ ﬂﬂ@dﬁl’
2, ’ - 0 if k=even
= — —CQs =
e M it k=odd
fer
477 1 _kx. inv
Vey) ==L T o k= D2

=133

Mo matter what method (other than Separation of Variables) you use
to solve this problem, you are guaranteed by Uniqueness Theorem
to get the same answerl



Solution with b.c. Vy(y)

) within the “slot”

Y
T

Electrostatic Potential V (x,






Surface charge density with Vp(y) = Vo =1

o
20

15

10

0.5 1Y

Induced charge density on the x = 0 plane or the end strip

(0) e (E-ir) = 02

x=0



Final Solution for Vp(y) = Vo =1

o
20

15

10

0.5 1

Induced charge density on the xz-plane at y =0, i.e.,

2 oV
O'(X,O) = €o (E ']|y:0) = —¢o @

y=0



3D Laplace’s Equation in Cartesian System

Examlfﬂe An infinitely long rectangular metal pipe (sides a and b) is
grounded, but one end, at x = 0, is maintained at a specified potential Vp(y, z).

Find the potential inside the pipe.

¥t v=0 (i) V=0wheny=0,
R Rt
iii = (when z = (,
Violy, 1) —| \ 1 (iv) V =0whenz = b, BC
b = | (v) V—0asx— o0
/ (vi) V= Vuly,z) whenx = 0.
z V=0

v v v
This is a genuinely three-dimensional problem, — + —+— =0
axz = ay:  Bz2

14X 14*Y 1d°Z
V(‘t'L Z} = X(I)Y(J?)Z(z:l ﬁ Em ?d_yﬂ + EF =0.



Separation of Variables & Boundary Conditions

It follows that
1d*x 1 d*Y 1 d*z
——— = (), ——— =3, ——— =Ci with C;+Cy+Cs=0.
Y a2 1 ¥ a2 L T3 1, WL 1+ €2+ Cs

Setting C; = —k* and C3 = —1*, we have C; = k* + I%,

2

2 2
3 ODEs: X _ k2 + X, ey _ —iy, &z _ —*z.
dxz }’2 22

X(x) = AeV¥H0x 4 g VEHx
= Y(y) = Csinky + Dcosky,
Z(z) = Esinlz 4+ Fcoslz.

Boundary condition (v) implies A = 0, (i) gives D = 0, and (iii) yvields F = 0,
whereas (ii) and (iv) require that k = nxr fa and | = mmx /b, where n and m are
positive integers. Combining the remaining constants, we are left with

Vix, y,2) = Ce ™V War+mbrx gintumy ja) sin(maz/b).



Use of Fourier Trick

Vix,y,z) = ZE Cp e ™ PP mBRY gin oy fa) sin(maz/b)

n=l m=]1
[= s ]
B.C. W) I V(0,y.20=3 3 Conmsin(nry/a) sin(mrz/b) = Vo(y, z)
n=| m=1

Use Fourler Trick: multiply by sin(n'sy fa) sin(m'mz/b),

]
EZLM f sin(nry fa) sin(n'my/a) dy fu sin(mmz/b) sin(m'wz/b)dz

n=1 m=1

a b
= f f Vo(y, z) sinin'my/a) sin(m'mz/b) dy dz.
Li] ]

o b
Cam = if f Va(y, z) sininmy fa) sin(mxz/b) dy dz.
ab o Jo



Final Solution for b.c. Vo(y,z) = Vo = const.

Example

For instance, if the end of the tube is a conducter at constant potential Vo = Vo(y, z)

4V ¢ . b
Comw = — sin{nyfa)dy sin(mmz/b) dz
ab 0 1]
0, if n or m is even,

16V,
winm’

if n and m are odd.

16V - 1 [y . .
Vix,v,2) = qu E — g~/ vl +imfb) x sin(ny/a) sin(mmz/h)
A.m=135..
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