Physics II (PH 102) Electromagnetism (Lecture 12)

Udit Raha

Indian Institute of Technology Guwahati

Feb 2020

Method of Separation of Variables

Method of SEPARATION OF VARIABLES is one of the most widely used analytical techniques to solve Partial Differential Equations (PDEs).

Method of Separation of Variables

Method of SEPARATION OF VARIABLES is one of the most widely used analytical techniques to solve Partial Differential Equations (PDEs).

Separable Ansatz:

Solution of the Laplace's Equation is expressed either as a sum or product of several smooth functions, each being only dependent upon a single independent variable, i.e.,

 $V(x,y,z) = X(x) + Y(y) + Z(z) \qquad \text{or} \qquad V(x,y,z) = X(x)Y(y)Z(z).$

This method does not ensure the most general solutions, but rather yields a sub-class of all possible solutions that are separable.

Uniqueness Theorem: For given Set of Boundary Conditions it guarantees the correct answer irrespective to type to ansatz or methodology.

Method of Separation of Variables

Method of SEPARATION OF VARIABLES is one of the most widely used analytical techniques to solve Partial Differential Equations (PDEs).

Separable Ansatz:

Solution of the Laplace's Equation is expressed either as a sum or product of several smooth functions, each being only dependent upon a single independent variable, i.e.,

V(x, y, z) = X(x) + Y(y) + Z(z) or V(x, y, z) = X(x)Y(y)Z(z).

- This method does not ensure the most general solutions, but rather yields a sub-class of all possible solutions that are separable.
- Uniqueness Theorem: For given Set of Boundary Conditions it guarantees the correct answer irrespective to type to ansatz or methodology.
- Linearity property of Laplace's solution: If V_1, V_2, V_3, \cdots satisfy Laplace's equation, so does any linear combinations of them, i.e., if

$$V = \alpha_1 V_1 + \alpha_2 V_2 + \alpha_3 V_3 + \cdots$$

where α_i are arbitrary <u>real</u> constants, then

$$\nabla^2 V = \alpha_1 \nabla^2 V_1 + \alpha_2 \nabla^2 V_2 + \alpha_3 \nabla^2 V_3 + \dots = 0.$$

Solve the 2D Laplace's Equation in Cartesian co-ordinates:

$$\nabla^2 V(x,y) = \frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0$$

(ロ)、(型)、(E)、(E)、 E) のQ()

Solve the 2D Laplace's Equation in Cartesian co-ordinates:

$$\nabla^2 V(x,y) = \frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0$$

▶ Try Additive ansatz: V(x, y) = X(x) + Y(y); $X, Y \rightarrow$ smooth functions.

$$\frac{d^2X(x)}{dx^2} + \frac{d^2Y(y)}{dy^2} = 0 \implies X''(x) + Y''(y) = 0$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve the 2D Laplace's Equation in Cartesian co-ordinates:

$$\nabla^2 V(x,y) = \frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0$$

▶ Try Additive ansatz: V(x, y) = X(x) + Y(y); $X, Y \rightarrow$ smooth functions.

$$\frac{d^2X(x)}{dx^2} + \frac{d^2Y(y)}{dy^2} = 0 \implies X''(x) + Y''(y) = 0$$

▶ X''(x) and Y''(y) can not add to zero $\forall (x, y)$, unless they are consts., i.e.,

2 ODEs:
$$X''(x) = -Y''(y) = \alpha \Rightarrow \text{const.} \in \mathbb{R}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Solve the 2D Laplace's Equation in Cartesian co-ordinates:

$$\nabla^2 V(x,y) = \frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0$$

▶ Try Additive ansatz: V(x, y) = X(x) + Y(y); $X, Y \rightarrow$ smooth functions.

$$\frac{d^2X(x)}{dx^2} + \frac{d^2Y(y)}{dy^2} = 0 \implies X''(x) + Y''(y) = 0$$

▶ X''(x) and Y''(y) can not add to zero $\forall (x, y)$, unless they are consts., i.e.,

2 ODEs:
$$X''(x) = -Y''(y) = \alpha \Rightarrow \text{const.} \in \mathbb{R}$$

Solutions to 2 ODEs ($\alpha, \beta, \gamma, \delta$ or $\rho \in \mathbb{R}$ determined from b.c.)

$$X(x) = \frac{1}{2}\alpha x^2 + \beta x + \delta$$

$$Y(y) = -\frac{1}{2}\alpha y^2 + \gamma y + \rho$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solve the 2D Laplace's Equation in Cartesian co-ordinates:

$$\nabla^2 V(x,y) = \frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0$$

▶ Try Additive ansatz: V(x, y) = X(x) + Y(y); $X, Y \rightarrow$ smooth functions.

$$\frac{d^2X(x)}{dx^2} + \frac{d^2Y(y)}{dy^2} = 0 \implies X''(x) + Y''(y) = 0$$

▶ X''(x) and Y''(y) can not add to zero $\forall (x, y)$, unless they are consts., i.e.,

2 ODEs:
$$X''(x) = -Y''(y) = \alpha \Rightarrow \text{const.} \in \mathbb{R}$$

Solutions to 2 ODEs ($\alpha, \beta, \gamma, \delta$ or $\rho \in \mathbb{R}$ determined from b.c.)

$$X(x) = \frac{1}{2}\alpha x^2 + \beta x + \delta$$
$$Y(y) = -\frac{1}{2}\alpha y^2 + \gamma y + \rho$$
$$V(x, y) = X(x) + Y(y) \equiv \frac{1}{2}\alpha (x^2 - y^2) + \beta x + \gamma y + \kappa$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Solve the 2D Laplace's Equation in Cartesian co-ordinates:

$$\nabla^2 V(x,y) = \frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0$$

▶ Try **Additive ansatz**: V(x, y) = X(x) + Y(y); $X, Y \rightarrow$ smooth functions.

$$\frac{d^2X(x)}{dx^2} + \frac{d^2Y(y)}{dy^2} = 0 \implies X''(x) + Y''(y) = 0$$

▶ X''(x) and Y''(y) can not add to zero $\forall (x, y)$, unless they are consts., i.e.,

2 ODEs:
$$X''(x) = -Y''(y) = \alpha \Rightarrow \text{const.} \in \mathbb{R}$$

Solutions to 2 ODEs ($\alpha, \beta, \gamma, \delta$ or $\rho \in \mathbb{R}$ determined from b.c.)

$$X(x) = \frac{1}{2}\alpha x^2 + \beta x + \delta$$
$$Y(y) = -\frac{1}{2}\alpha y^2 + \gamma y + \rho$$
$$V(x, y) = X(x) + Y(y) \equiv \frac{1}{2}\alpha (x^2 - y^2) + \beta x + \gamma y + \kappa$$

This Additive Ansatz yields problematic unphysical solutions for potentials due to localized charge distributions, as they do not die away as $x, y \to \pm \infty$!

▶ Try **Product ansatz**: V(x, y) = X(x)Y(y); $X, Y \rightarrow$ smooth functions.

$$\nabla^2 V(x, y) = \frac{d^2 X(x)}{dx^2} Y(y) + X(x) \frac{d^2 Y(y)}{dy^2} = 0$$

▶ Try **Product ansatz**: V(x, y) = X(x)Y(y); $X, Y \rightarrow$ smooth functions.

$$\nabla^2 V(x,y) = \frac{d^2 X(x)}{dx^2} Y(y) + X(x) \frac{d^2 Y(y)}{dy^2} = 0 \implies \frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = 0$$

▶ Try **Product ansatz**: V(x, y) = X(x)Y(y); $X, Y \rightarrow$ smooth functions.

$$\nabla^2 V(x,y) = \frac{d^2 X(x)}{dx^2} Y(y) + X(x) \frac{d^2 Y(y)}{dy^2} = 0 \implies \frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = 0$$

► X''(x)/X(x) and Y''(y)/Y(y) can not add to zero $\forall (x, y)$, unless,

2 ODEs:
$$-\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} = \frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} = \pm k^2 \rightarrow const. \in \mathbb{R}$$

 \implies Single 2nd order PDE gets reduced to two 2nd ODEs. The choice \pm is dictated by the specific nature of the problem and b.c.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

▶ Try **Product ansatz**: V(x, y) = X(x)Y(y); $X, Y \rightarrow$ smooth functions.

$$\nabla^2 V(x,y) = \frac{d^2 X(x)}{dx^2} Y(y) + X(x) \frac{d^2 Y(y)}{dy^2} = 0 \implies \frac{X''(x)}{X(x)} + \frac{Y''(y)}{Y(y)} = 0$$

► X''(x)/X(x) and Y''(y)/Y(y) can not add to zero \forall (x, y), unless,

2 ODEs:
$$-\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} = \frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} = \pm k^2 \rightarrow const. \in \mathbb{R}$$

 \implies Single 2nd order PDE gets reduced to two 2nd ODEs. The choice \pm is dictated by the specific nature of the problem and b.c.

► E.g., $+k^2$ choice leads to the full solution as combinations of **oscillatory** & exponential functions, $V(x, y) = X(x)Y(y) = (A\cos kx + B\sin kx)(C\cosh ky + D\sinh ky)$, $const.e^{-ky}$ \Rightarrow yields correct physical nature of potentials due to localized distributions.

Hyperbolic Functions

They are analogs of ordinary trigonometrical functions:

Properties of Solutions obtained via Variable Separable Ansatz

There exists a *complete* and *orthonormal* set of *basis functions S* for expansion of any function, say, X(x), obtained as a solution to the Laplace's equation via the separation of variables ansatz:

Properties of Solutions obtained via Variable Separable Ansatz

There exists a *complete* and *orthonormal* set of *basis functions* S for expansion of any function, say, X(x), obtained as a solution to the Laplace's equation via the separation of variables ansatz:

▶ **Completeness:** If the solution function X(x) defined over the given domain, $x \in \mathbb{D}[a, b] \subset \mathbb{R}$, can be expanded as arbitrary *linear combination* of so-called "*basis functions*" $f_n(x)$:

$$X(x) = \sum_{n=0}^{\infty} C_n f_n(x); \quad C_n \in \mathbb{R} \quad \& \quad f_n(x) \in S.$$

Fact: The Basis Functions $f_n(x) \in S$ defined on domain $\mathbb{D}[a, b] \subset \mathbb{R}$ span an ∞ -dimensional vector space of solutions, $F = \{X(x) \mid x \in \mathbb{D}[a, b] \subset \mathbb{R}\}$, termed as a FUNCTION SPACE, where,

 $S = \{f_n(x) \mid n \in \mathbb{Z}, x \in \mathbb{D}[a, b] \subset \mathbb{R}\}$

Properties of Solutions obtained via Variable Separable Ansatz

There exists a *complete* and *orthonormal* set of *basis functions* S for expansion of any function, say, X(x), obtained as a solution to the Laplace's equation via the separation of variables ansatz:

▶ **Completeness:** If the solution function X(x) defined over the given domain, $x \in \mathbb{D}[a, b] \subset \mathbb{R}$, can be expanded as arbitrary *linear combination* of so-called "*basis functions*" $f_n(x)$:

$$X(x) = \sum_{n=0}^{\infty} C_n f_n(x); \quad C_n \in \mathbb{R} \quad \& \quad f_n(x) \in S.$$

Fact: The Basis Functions $f_n(x) \in S$ defined on domain $\mathbb{D}[a, b] \subset \mathbb{R}$ span an ∞ -dimensional vector space of solutions, $F = \{X(x) \mid x \in \mathbb{D}[a, b] \subset \mathbb{R}\}$, termed as a FUNCTION SPACE, where,

$$S = \{f_n(x) \mid n \in \mathbb{Z}, x \in \mathbb{D}[a, b] \subset \mathbb{R}\}$$

▶ Orthonormality of Basis: If the set of functions, $f_n(x) \in S$ defined on the domain $\mathbb{D}[a, b] \subset \mathbb{R}$ is such that their convolution :

$$\int_{a}^{b} f_{n}(x) f_{m}(x) dx = const. \ \delta_{nm} = \begin{cases} const. & \text{if } m = n \\ 0 & \text{if } m \neq n \\ 0 & \text{if } m \neq n \end{cases}$$

Basis Set of a Function Space of Laplace's Solutions

Example

Sine and Cosine functions can form a *complete* and *orthonormal* basis set S in a certain domain, say, $x \in \mathbb{D}[\gamma, \gamma + 2I] \subset \mathbb{R}$:

$$S = \left\{ \sin\left(\frac{n\pi x}{l}\right), \cos\left(\frac{n\pi x}{l}\right) \mid n \in \mathbb{Z}, x \in \mathbb{D}[\gamma, \gamma + 2l] \subset \mathbb{R} \right\}$$

Basis Set of a Function Space of Laplace's Solutions

Example

Sine and Cosine functions can form a *complete* and *orthonormal* basis set S in a certain domain, say, $x \in \mathbb{D}[\gamma, \gamma + 2I] \subset \mathbb{R}$:

$$S = \left\{ \sin\left(\frac{n\pi x}{l}\right), \cos\left(\frac{n\pi x}{l}\right) \mid n \in \mathbb{Z}, x \in \mathbb{D}[\gamma, \gamma + 2l] \subset \mathbb{R} \right\}$$

• Orthonormality:(Take e.g., $\gamma = 0, 2l = 2\pi$)

$$\int_{\gamma}^{\gamma+2l} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) dx = l\delta_{nm},$$

$$\int_{\gamma}^{\gamma+2l} \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx = l\delta_{nm},$$

$$\int_{\gamma}^{\gamma+2l} \sin\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx = 0, \quad \text{where } m, n \in \mathbb{Z}.$$

Completeness: Any arbitrary Harmonic Function can be expanded in an infinite series of Sines and Cosines basis functions. Such a series is termed as a Fourier Expansion.

Fourier Series: Topic of Harmonic Analysis

The Fourier Expansion is valid for all Harmonic Functions f(x) because they are *Piecewise Regular* in a given domain \mathbb{D} , i.e.,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

- f(x) must be single valued in \mathbb{D} .
- f(x) can atmost have finite number of finite discontinuities in \mathbb{D} .
- f(x) must have finite number of minima or maxima in \mathbb{D} .

These are termed as the DIRICHLET's conditions of sufficiency.

Fourier Series: Topic of Harmonic Analysis

The Fourier Expansion is valid for all Harmonic Functions f(x) because they are *Piecewise Regular* in a given domain \mathbb{D} , i.e.,

- f(x) must be single valued in \mathbb{D} .
- f(x) can atmost have finite number of finite discontinuities in \mathbb{D} .
- f(x) must have finite number of minima or maxima in \mathbb{D} .

These are termed as the DIRICHLET's conditions of sufficiency.

A Fourier Expansion is defined as an expansion of a Piecewise Regular function, say f(x), defined over a Principal domain $\mathbb{D} \equiv [\gamma \leq x \leq (\gamma + 2I)] \in \mathbb{R}$ and having Period T = 2I outside this interval \mathbb{D} , in an infinite series of sine and cosine functions:

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right].$$

Fourier Series: Topic of Harmonic Analysis

The Fourier Expansion is valid for all Harmonic Functions f(x) because they are *Piecewise Regular* in a given domain \mathbb{D} , i.e.,

- f(x) must be single valued in \mathbb{D} .
- f(x) can atmost have finite number of finite discontinuities in \mathbb{D} .
- f(x) must have finite number of minima or maxima in \mathbb{D} .

These are termed as the DIRICHLET's conditions of sufficiency.

A Fourier Expansion is defined as an expansion of a Piecewise Regular function, say f(x), defined over a Principal domain $\mathbb{D} \equiv [\gamma \leq x \leq (\gamma + 2I)] \in \mathbb{R}$ and having Period T = 2I outside this interval \mathbb{D} , in an infinite series of sine and cosine functions:

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right].$$

The real coefficients of this series are called Fourier Coefficients.

$$a_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx \quad ; \quad n \ge 0$$

$$b_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx \quad ; \quad n \ge 1.$$

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right]$$

◆□ ▶ ◆昼 ▶ ◆ 重 ▶ ◆ 国 ▶ ◆ □ ▶

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right]$$

First, multiplying both sides by $\cos\left(\frac{n\pi x}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma + 2l]$

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right]$$

First, multiplying both sides by $\cos\left(\frac{n\pi x}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma + 2l]$

$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} \int_{\gamma}^{\gamma+2l} \left[a_m \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) + b_m \cos\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) \right]^0 dx$$

(ロ)、(型)、(E)、(E)、 E) のQ()

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right]$$

First, multiplying both sides by $\cos\left(\frac{n\pi x}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma + 2l]$

$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} \int_{\gamma}^{\gamma+2l} \left[a_m \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) + b_m \cos\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) \right]^0 dx$$
$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} a_m \left[\int_{\gamma}^{\gamma+2l} \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx \right] = \sum_{m=1}^{\infty} la_m \delta_{nm} = la_n$$
$$a_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx \quad ; \quad \forall n \ge 1$$

(ロ)、(型)、(E)、(E)、 E) のQ()

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right]$$

First, multiplying both sides by $\cos\left(\frac{n\pi \chi}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma+2l]$

$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} \int_{\gamma}^{\gamma+2l} \left[a_m \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) + b_m \cos\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) \right]^0 dx$$
$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} a_m \left[\int_{\gamma}^{\gamma+2l} \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx \right] = \sum_{m=1}^{\infty} la_m \delta_{nm} = la_n$$
$$a_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx \quad ; \quad \forall n \ge 1$$

Similarly, multiplying both sides by $\sin\left(\frac{n\pi x}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma + 2l]$

$$\int_{\gamma}^{\gamma+2l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} b_m \left[\int_{\gamma}^{\gamma+2l} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) dx \right] = \sum_{m=1}^{\infty} lb_m \delta_{nm} = lb_n$$
$$b_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx \quad ; \quad \forall n \ge 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left[a_m \cos\left(\frac{m\pi x}{l}\right) + b_m \sin\left(\frac{m\pi x}{l}\right) \right]$$

First, multiplying both sides by $\cos\left(\frac{n\pi x}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma + 2l]$

$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} \int_{\gamma}^{\gamma+2l} \left[a_m \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) + b_m \cos\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) \right]^0 dx$$
$$\int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} a_m \left[\int_{\gamma}^{\gamma+2l} \cos\left(\frac{n\pi x}{l}\right) \cos\left(\frac{m\pi x}{l}\right) dx \right] = \sum_{m=1}^{\infty} la_m \delta_{nm} = la_n$$
$$a_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \cos\left(\frac{n\pi x}{l}\right) dx \quad ; \quad \forall n \ge 1$$

Similarly, multiplying both sides by $\sin\left(\frac{n\pi x}{l}\right)$ and integration over $\mathbb{D}[\gamma, \gamma + 2l]$

$$\int_{\gamma}^{\gamma+2l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx = \sum_{m=1}^{\infty} b_m \left[\int_{\gamma}^{\gamma+2l} \sin\left(\frac{n\pi x}{l}\right) \sin\left(\frac{m\pi x}{l}\right) dx \right] = \sum_{m=1}^{\infty} lb_m \delta_{nm} = lb_n$$
$$b_n = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) \sin\left(\frac{n\pi x}{l}\right) dx \quad ; \quad \forall n \ge 1$$

Finally, simply integrating both sides over $\mathbb{D}[\gamma,\gamma+2I]$

$$\int_{\gamma}^{\gamma+2l} f(x) dx = \frac{a_0}{2} \int_{\gamma}^{\gamma+2l} dx + \sum_{m=1}^{\infty} \int_{\gamma}^{\gamma+2l} \left[a_m \cos\left(\frac{m\pi x}{l}\right)^{\bullet} b_m \sin\left(\frac{m\pi x}{l}\right) \right]^0 dx$$
$$\int_{\gamma}^{\gamma+2l} f(x) dx = la_0$$
$$a_0 = \frac{1}{l} \int_{\gamma}^{\gamma+2l} f(x) dx$$

Fourier Harmonic Analysis

Example

Find the Fourier series of the following periodic function (Square Pulse)

Does the function satisfy DIRICHLET's conditions to be Fourier Expanded?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Fourier Coefficients: Here, $\mathbb{D}[\gamma = 0, \gamma + 2I = 2\pi]$

$$a_{0} = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) d\theta \qquad a_{\pi} = \frac{1}{\pi} \int_{0}^{2\pi} f(\theta) \cos n\theta d\theta = \frac{1}{\pi} \left[\int_{0}^{\pi} f(\theta) d\theta + \int_{\pi}^{2\pi} f(\theta) d\theta \right] \qquad = \frac{1}{\pi} \left[\int_{0}^{\pi} A \cos n\theta d\theta + \int_{\pi}^{2\pi} (-A) \cos n\theta d\theta \right] = \frac{1}{\pi} \left[\int_{0}^{\pi} A d\theta + \int_{\pi}^{2\pi} - A d\theta \right] \qquad = \frac{1}{\pi} \left[A \frac{\sin n\theta}{n} \right]_{0}^{\pi} + \frac{1}{\pi} \left[-A \frac{\sin n\theta}{n} \right]_{\pi}^{2\pi} = 0$$

$$b_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \sin n\theta \, d\theta$$
$$= \frac{1}{\pi} \left[\int_0^{\pi} A \sin n\theta \, d\theta + \int_{\pi}^{2\pi} (-A) \sin n\theta \, d\theta \right]$$
$$= \frac{1}{\pi} \left[-A \frac{\cos n\theta}{n} \right]_0^{\pi} + \frac{1}{\pi} \left[A \frac{\cos n\theta}{n} \right]_{\pi}^{2\pi}$$
$$= \frac{A}{n\pi} \left[-\cos n\pi + \cos 0 + \cos 2n\pi - \cos n\pi \right]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Fourier Coefficients

$$b_n = \frac{A}{n\pi} \left[-\cos n\pi + \cos 0 + \cos 2n\pi - \cos n\pi \right]$$
$$= \frac{A}{n\pi} \left[1 + 1 + 1 \right]$$
$$b_n = \frac{4A}{n\pi} \quad \text{when n is odd}$$

$$b_n = \frac{A}{n\pi} \left[-\cos n\pi + \cos 0 + \cos 2n\pi - \cos n\pi \right]$$
$$= \frac{A}{n\pi} \left[-1 + 1 + 1 - 1 \right]$$
$$b_n = 0 \quad \text{when n is even}$$

Therefore, the corresponding Fourier series is

$$f(\theta) = \frac{4A}{\pi} \left(\sin \theta + \frac{1}{3} \sin 3\theta + \frac{1}{5} \sin 5\theta + \frac{1}{7} \sin 7\theta + \cdots \right)$$

In writing the Fourier series it is not possible to consider infinite number of terms (HARMONICS) for practical reasons. The question therefore, is – how many harmonics do we consider?

$$f(\theta) = \begin{cases} A & \text{when } 0 < \theta < \pi \\ -A & \text{when } \pi < \theta < 2\pi \end{cases} = \frac{4A}{\pi} \sum_{n=1}^{n=\infty} \frac{1}{2n-1} \sin\left[(2n-1)\theta\right]$$

The red curve was drawn with 20 harmonics and the blue curve was drawn with 4 harmonics.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

2D Boundary Valued Problem in Cartesian System

Example

Two infinite grounded metal plates lie parallel to the xz-planes, one at y = 0and the other at $y = \pi$. The left end is closed off with an infinite strip insulated from the two plates and maintained at a specific potential $V_0(y)$. Find the potential inside the "slot".

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Solve Laplace's Equation for potential V(x, y, z) in the "Slot" \mathcal{D} :

 $\mathcal{D} = \{(x, y, z) | x > 0, \ 0 < y < \pi, -\infty < z < \infty\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Solve Laplace's Equation for potential V(x, y, z) in the "Slot" \mathcal{D} :

 $\mathcal{D} = \{(x, y, z) | x > 0, \ 0 < y < \pi, -\infty < z < \infty\}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

▶ Region *D* enclosed by 6 Boundary surfaces:

Solve Laplace's Equation for potential V(x, y, z) in the "Slot" \mathcal{D} :

 $\mathcal{D} = \{ (x, y, z) | x > 0, \ 0 < y < \pi, -\infty < z < \infty \}$

▶ Region *D* enclosed by 6 Boundary surfaces:

Translational symmetry in z: 2-dim Problem $\rightarrow V$ is independent of z:

$$V(x,y,z) \stackrel{2-\dim}{\to} V(x,y)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○

Solve Laplace's Equation for potential V(x, y, z) in the "Slot" \mathcal{D} :

 $\mathcal{D} = \{ (x, y, z) | x > 0, \ 0 < y < \pi, -\infty < z < \infty \}$

▶ Region *D* enclosed by 6 Boundary surfaces:

x = 0 and x = ∞
 y = 0 and y = π
 z = +∞

► Translational symmetry in z: 2-dim Problem → V is independent of z:

$$V(x,y,z) \stackrel{2-\dim}{\to} V(x,y)$$

4 Boundary Conditions:

(i)
$$V(x, y = 0, z) = 0$$
 $\forall x, z$
(ii) $V(x, y = \pi, z) = 0$ $\forall x, z$
(iii) $V(x = 0, y, z) = V_0(y)$ $\forall z$
(iv) $V(x \to \infty, y, z) = 0$ $\forall y, z$

No Boundary Conditions needed for the surfaces at $z = \pm \infty$.

Separation of Variables

Applying Boundary Conditions

B.C. (iv)
$$V(x \to \infty) \to 0 \implies A = 0$$
 (where we take $k > 0$)
 $\implies V(x, y) = e^{-kx} (C \sin ky + D \cos ky)$ (B is absorbed
B.C. (i) $V(y = 0) = 0 \implies D = 0$
 $\implies V(x, y) = Ce^{-kx} \sin ky$
B.C. (ii) $V(y = \pi) = 0 \implies \sin k\pi = 0 \implies k = 1, 2, 3 \dots \in \mathbb{N}$
 $V(x, y) = \sum_{k=1}^{\infty} C_k e^{-kx} \sin ky$

Principle of superposition due to Linearity of Laplace's Equation

B.C. (iii) $V(x=0) = V_0(y) \Rightarrow A$ fourier series with $\gamma = 0$ and $I = \pi/2$

$$V_0(y) = \sum_{k=1}^{\infty} C_k \sin ky$$

$$C_k = \frac{2}{\pi} \int_0^{\pi} V_0(y) \sin ky \, dy$$

Use of Fourier Trick to find C_k :

► We obtained the following Fourier Series:

$$V_0(y) = \sum_{k=0}^{\infty} C_k \sin ky.$$

Multiplying both sides by sin py and integrating between $0 \le y \le \pi$:

$$\int_{0}^{\pi} V_{0}(y) \sin py \, dy = \int_{0}^{\pi} \left[\sum_{k=0}^{\infty} C_{k} \sin ky \sin py \right] \, dy$$
$$= \sum_{k=0}^{\infty} C_{k} \left[\int_{0}^{\pi} \sin ky \sin py \, dy \right]$$
$$= \sum_{k=0}^{\infty} C_{k} \left[\frac{\pi}{2} \delta_{pk} \right] = \frac{\pi}{2} C_{p}$$
$$C_{p} = \frac{2}{\pi} \int_{0}^{\pi} V_{0}(y) \sin py \, dy.$$
General Solution: $V(x, y) = \sum_{k=1}^{\infty} \left[\frac{2}{\pi} \int_{0}^{\pi} V_{0}(y) \sin ky \, dy \right] e^{-kx} \sin ky$

Final Solution for b.c. $V_0(y) = V_0 = const$.

Example

For $V_0(y) = V_0 = constant$

C

$$\begin{aligned} G_k &= \frac{2V_0}{\pi} \int_0^\pi \sin ky \, dy \\ &= \frac{2V_0}{k\pi} (1 - \cos k\pi) = \begin{cases} 0 & \text{if } k = even \\ \frac{4V_0}{k\pi} & \text{if } k = odd \end{cases} \end{aligned}$$

$$V(x,y) = \frac{4V_0}{\pi} \sum_{k=1,3,5,\dots} \frac{1}{k} e^{-kx} \sin ky = \frac{2V_0}{\pi} \tan^{-1}(\frac{\sin y}{\sinh x})$$

No matter what method (other than Separation of Variables) you use to solve this problem, you are guaranteed by Uniqueness Theorem to get the same answer!

Solution with b.c. $V_0(y) = V_0 = 1$

Electrostatic Potential $V(x, \frac{y}{\pi})$ within the "slot"

Equipotentials with b.c. $V_0(y) = V_0 = 1$

Contour Plot of the Equipotentials of $V(x, \frac{y}{\pi})$

(ロ)、

Surface charge density with $V_0(y) = V_0 = 1$

Induced charge density on the x = 0 plane or the end strip

$$\sigma\left(0,\frac{y}{\pi}\right) = \epsilon_0 \left(\mathbf{E} \cdot \hat{\mathbf{i}}|_{x=0}\right) = -\epsilon_0 \left.\frac{\partial V}{\partial x}\right|_{x=0}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Final Solution for $V_0(y) = V_0 = 1$

Induced charge density on the xz-plane at y = 0, i.e.,

$$\sigma(\mathbf{x},0) = \epsilon_0 \left(\mathbf{E} \cdot \hat{\mathbf{j}} |_{y=0} \right) = -\epsilon_0 \left. \frac{\partial V}{\partial y} \right|_{y=0}$$

・ロト ・御 ト ・ ヨト ・ ヨト

æ

3D Laplace's Equation in Cartesian System

Example An infinitely long rectangular metal pipe (sides a and b) is grounded, but one end, at x = 0, is maintained at a specified potential $V_0(y, z)$. Find the potential inside the pipe.

This is a genuinely three-dimensional problem,

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

$$V(x, y, z) = X(x)Y(y)Z(z) \implies \frac{1}{X}\frac{d^{2}X}{dx^{2}} + \frac{1}{Y}\frac{d^{2}Y}{dy^{2}} + \frac{1}{Z}\frac{d^{2}Z}{dz^{2}} = 0$$

Separation of Variables & Boundary Conditions

It follows that

$$\frac{1}{X}\frac{d^2X}{dx^2} = C_1, \quad \frac{1}{Y}\frac{d^2Y}{dy^2} = C_2, \quad \frac{1}{Z}\frac{d^2Z}{dz^2} = C_3, \quad \text{with } C_1 + C_2 + C_3 = 0.$$

Setting $C_2 = -k^2$ and $C_3 = -l^2$, we have $C_1 = k^2 + l^2$,

Boundary condition (v) implies A = 0, (i) gives D = 0, and (iii) yields F = 0, whereas (ii) and (iv) require that $k = n\pi/a$ and $l = m\pi/b$, where n and m are positive integers. Combining the remaining constants, we are left with

$$V(x, y, z) = C e^{-\pi \sqrt{(n/a)^2 + (m/b)^2 x}} \sin(n\pi y/a) \sin(m\pi z/b).$$

Use of Fourier Trick

$$V(x, y, z) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n,m} e^{-\pi \sqrt{(n/a)^2 + (m/b)^2}x} \sin(n\pi y/a) \sin(m\pi z/b)$$

B.C. (vi) :
$$V(0, y, z) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n,m} \sin(n\pi y/a) \sin(m\pi z/b) = V_0(y, z)$$

Use Fourier Trick: multiply by $\sin(n'\pi y/a) \sin(m'\pi z/b)$,

$$\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} C_{n,m} \int_{0}^{a} \sin(n\pi y/a) \, \sin(n'\pi y/a) \, dy \int_{0}^{b} \sin(m\pi z/b) \, \sin(m'\pi z/b) \, dz$$
$$= \int_{0}^{a} \int_{0}^{b} V_{0}(y,z) \sin(n'\pi y/a) \, \sin(m'\pi z/b) \, dy \, dz.$$

$$C_{n,m} = \frac{4}{ab} \int_0^a \int_0^b V_0(y,z) \sin(n\pi y/a) \, \sin(m\pi z/b) \, dy \, dz.$$

Final Solution for b.c. $V_0(y, z) = V_0 = const.$

Example

For instance, if the end of the tube is a conductor at *constant* potential $V_0 = V_0(y, z)$

$$C_{n,m} = \frac{4V_0}{ab} \int_0^a \sin(n\pi y/a) \, dy \int_0^b \sin(m\pi z/b) \, dz$$
$$= \begin{cases} 0, & \text{if } n \text{ or } m \text{ is even,} \\ \frac{16V_0}{\pi^2 nm}, & \text{if } n \text{ and } m \text{ are odd.} \end{cases}$$

$$V(x, y, z) = \frac{16V_0}{\pi^2} \sum_{n,m=1,3,5...}^{\infty} \frac{1}{nm} e^{-\pi \sqrt{(n/a)^2 + (m/b)^2}x} \sin(n\pi y/a) \sin(m\pi z/b)$$

・ロ> < 回> < 回> < 回> < 回> < 回