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Macroscopic Electric Fields In Dielectrics

I In vacuum, the TRUE Electric �eld ETrue ≡ Evac is unambiguously
calculated which in general has contributions both from distant free as
well as bound charge distributions ρtot = ρf + ρb.

I Within matter, the MICROSCOPIC Background Electric �eld EMicr, due
to ALL �elementary� charges (e.g., electrons, ions, nuclei, ...), is utterly
complicated if not impossible to calculate. The net in-medium �eld is

ETrue = Evac + EMicr

I Then it becomes crucial to de�ne a realistic MACROSCOPIC Field:

De�nition
MACROSCOPIC Electric �eld: It is de�ned as the space average �eld over an
arbitrary macroscopic volume V of matter which is large enough to contain a
statistically large number (& 104−105) of atoms or molecules of that material,
yet small enough compared to the dimensions of the material sample, in order
to preserve all signi�cant large-scale spatial variations in the �eld, i.e.,

E(r) ≡ 〈ETrue(r)〉V =
1

V

˚

V

ETrue(r
′ − r)dv ′,

where, for convenience, the integral is de�ned over a spherical region V.



Macroscopic Electric Fields In Dielectrics

I In vacuum, the TRUE Electric �eld ETrue ≡ Evac is unambiguously
calculated which in general has contributions both from distant free as
well as bound charge distributions ρtot = ρf + ρb.

I Within matter, the MICROSCOPIC Background Electric �eld EMicr, due
to ALL �elementary� charges (e.g., electrons, ions, nuclei, ...), is utterly
complicated if not impossible to calculate. The net in-medium �eld is

ETrue = Evac + EMicr

I Then it becomes crucial to de�ne a realistic MACROSCOPIC Field:

De�nition
MACROSCOPIC Electric �eld: It is de�ned as the space average �eld over an
arbitrary macroscopic volume V of matter which is large enough to contain a
statistically large number (& 104−105) of atoms or molecules of that material,
yet small enough compared to the dimensions of the material sample, in order
to preserve all signi�cant large-scale spatial variations in the �eld, i.e.,

E(r) ≡ 〈ETrue(r)〉V =
1

V

˚

V

ETrue(r
′ − r)dv ′,

where, for convenience, the integral is de�ned over a spherical region V.



Macroscopic Electric Fields In Dielectrics

I In vacuum, the TRUE Electric �eld ETrue ≡ Evac is unambiguously
calculated which in general has contributions both from distant free as
well as bound charge distributions ρtot = ρf + ρb.

I Within matter, the MICROSCOPIC Background Electric �eld EMicr, due
to ALL �elementary� charges (e.g., electrons, ions, nuclei, ...), is utterly
complicated if not impossible to calculate. The net in-medium �eld is

ETrue = Evac + EMicr

I Then it becomes crucial to de�ne a realistic MACROSCOPIC Field:

De�nition
MACROSCOPIC Electric �eld: It is de�ned as the space average �eld over an
arbitrary macroscopic volume V of matter which is large enough to contain a
statistically large number (& 104−105) of atoms or molecules of that material,
yet small enough compared to the dimensions of the material sample, in order
to preserve all signi�cant large-scale spatial variations in the �eld, i.e.,

E(r) ≡ 〈ETrue(r)〉V =
1

V

˚

V

ETrue(r
′ − r)dv ′,

where, for convenience, the integral is de�ned over a spherical region V.



Macroscopic Electric Fields In Dielectrics (contd.)

The entire dielectric medium can be thought of being composed of su�ciently
�nely grained spherical Averaging volumes (like, close-packing of marbles),

such that each spherical volume contains a statistically large number of atoms
or molecules.



Macroscopic Fields and Potential In Dielectrics

I We henceforth work with Macroscopic Electric �eld E(r) ≡ 〈ETrue(r)〉V , in
dielectrics, which is a conservative �eld derivable from a coresponding
Macroscopic Potential V (r) = 〈VTrue(r)〉V , such that

∇× E(r) = ∇× [−∇V (r)] = 0 &

˛

Loop

E(r) · dr = 0.

I Modi�ed Gauss's Di�erential Law:

ε0∇ · E(r) = ρtot(r) = ρb(r) + ρf (r)

= −∇ · P(r) + ρf (r)

∇ · (ε0E + P) = ρf

=⇒ ∇ ·D = ρf

I The �eld D ≡ ε0E + P is termed as the ELECTRIC DISPLACEMENT.

I Modi�ed Gauss's Integral Law:
‹

S

D · dS =

˚

V

∇ ·D dv =

˚

V

ρf dv = Qf , encl

where S is an arbitrary closed surface bounding a region of dielectric V
with total enclosed free charge Qf , encl.
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Modi�ed Gauss's Law in Dielectrics: Summary'

&

$

%

∇ ·D = ρf

∇ · E =
ρtot
ε0

=
ρb + ρf
ε0‹

surface

D · dS = Qf , encl

‹

surface

E · dS =
1

ε0
Qtot, encl =

1

ε0
(Qb + Qf )encl

The Constitutive Relation: D = ε0E + P

Warning!

I Henceforth, we revert back to using the old symbol E←→ E for the
Macroscopic Electric Field keeping in mind that it is NOT the same as the
True Electric Field ETrue within a dielectric which in general includes the
Microscopic Background Field EMicr.

I For free space (vacuum), they are equivalent, i.e., E ≡ ETrue ⇒ E.
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Polarized Sphere
Example

Consider an uncharged dielectric sphere with a �frozen-in� Polarization P = k
r
r̂,

where k is a constant. Find the Electric �eld as a function of r .

I Method I: The bound volume & surface charge densities:

ρb(r) = −∇ ·
(
k

r
r̂

)
= − 1

r2
∂

∂r

(
r2

k

r

)
= − k

r2
; σb = (P · r̂)r=R =

k

R

I Total bound charge:

Qb = Q
(volume)
b + Q

(surface)
b =

˚

V

ρb(r)dv
′ +

‹
S

σbda
′

=

R̂

0

(
− k

r ′2

)
4πr ′2dr ′ +

‹
k

R
da′ = −4πkR + 4πkR = 0

I Field outside sphere (r ≥ R): Since (Qf + Qb)encl = 0, then applying
Gauss's Integral Law for E:‹

S(r≥R)

E · da′ =
1

ε0
Qtot, encl(r) = 0

Er≥R(r) = 0
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Polarized Sphere (contd.)

I Field inside sphere (r < R): σb does not contribute in the bulk, then
using Gauss's Integral Law for E:

‹

s(r<R)

E · da′ =
1

ε0
Qtot, encl(r) =

1

ε0

˚

v

ρb(r)dv
′ =

1

ε0

˚

v

(
− k

r ′2

)
dv ′

E(4πr2) =
1

ε0

rˆ

0

(
− k

r ′2

)
4πr ′2dr ′ =⇒ E(r) = − k

ε0r
r̂

I Method II: Since Qf , encl = 0, then applying Modi�ed Gauss's Law for D:

‹

S

D · da′ = Qf , encl = 0 =⇒ D = 0 , ∀r (everywhere)

D = ε0E+ P = 0 =⇒ E(r) = − P

ε0
=

{
0 if r > R

− k
ε0r

r̂ if r ≤ R
.

I Notice: Method II is much quicker without reference to bound charges!
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Long Cylindrical Wire
Example

A long straight wire, carrying uniform line charge density λ, is surrounded by
rubber insulation out to radius a. Find the Electric Displacements and Electric
�elds everywhere.

I Construct a coaxial cylindrical Gaussian surface S of radius s and length L:‹

S

D · dS = Qf ; encl = λL

D(2πsL) = λL

D(s) =

(
λ

2πs

)
ŝ , ∀s (everywhere).

I Note: This formula is applicable both inside and outside the cladding.

I Electric Field inside the cladding (s ≤ a): Polarization P as well as the
dielectric constant being unknown, E can not be calculated.

I Electric Field outside the cladding (s > a): Since Polarization P = 0, so

D ≡ ε0E +��
0

P =⇒ E(s) =
1

ε0
D(s) =

(
λ

2πε0s

)
ŝ.
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Boundary Conditions in Dielectrics

I Consider an interface of two dielectrics media (1 & 2) with total surface
charge density σtot = σf + σb at the interface and total volume charge
densities ρtot,1 = ρf 1 + ρb1 and ρtot,2 = ρf 2 + ρb2, in the respectively bulks.

I Consider a pillbox-shaped Gaussian surface enclosing area S at the
interface, with negligibly small width, ε→ 0 in comparison with the base
diameters.

I Total enclosed free and bound charges within the Gaussian surface:

Qf , encl = σf S +
ε

2
(ρf 1 + ρf 2)S

ε→0−−−→ σf S ,

Qb, encl = σbS +
ε

2
(ρb1 + ρb2)S

ε→0−−−→ σbS .
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Boundary Conditions in Dielectrics

I Applying Gauss's Law for D:

lim
ε→0

‹

S

D · dS = (D1 · n̂1 +D2 · n̂2)S = lim
ε→0

Qf , encl = σf S

(D1 −D2) · n̂1 = D1⊥ − D2⊥ = σf .

I Applying Gauss's Law for E:

lim
ε→0

‹

S

E · dS = (E1 · n̂1 + E2 · n̂2) S =
1

ε0
lim
ε→0

Qtot, encl =
1

ε0
(σf + σb) S

(E1 − E2) · n̂1 = E1⊥ − E2⊥ =
1

ε0
(σf + σb).
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D · dS = (D1 · n̂1 +D2 · n̂2)S = lim
ε→0

Qf , encl = σf S

(D1 −D2) · n̂1 = D1⊥ − D2⊥ = σf .

I Applying Gauss's Law for E:

lim
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‹

S
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1

ε0
lim
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1

ε0
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1

ε0
(σf + σb).



I Macroscopic Electric �eld being conservative in nature, the circulation of E
around any closed loop must vanish. Choosing a narrow rectangular loop
of length L and vanishing end widths ε→ 0 straddling across the interface,

lim
ε→0

˛

Loop

E · d l = E1 · L+ E2 · (−L) = 0

(E1 − E2) · n̂1 || = 0

E1|| = E2||

I Since D = ε0E+ P, it follows that D|| = ε0E|| + P|| and consequently

D1|| − D2|| = P1|| − P2||.

I Similarly, from D⊥ = ε0E⊥ + P⊥

D1⊥ − D2⊥ = ε0(E1⊥ − E2⊥) + (P1⊥ − P2⊥)

σf = (σf + σb) + (P1⊥ − P2⊥)

P1⊥ − P2⊥ = −σb.
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Boundary Conditions in Dielectrics: SUMMARY'
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D1⊥ − D2⊥ = σf ,

D1|| − D2|| = P1|| − P2||,

P1⊥ − P2⊥ = −σb,

E1⊥ − E2⊥ =
1

ε0
(σf + σb),

E1|| = E2||,

V1 = V2,

∂V1

∂n
−
∂V2

∂n
=

1

ε0
(σf + σb).
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