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» Within matter, the MICROSCOPIC Background Electric field Ewicr, due
to ALL “elementary” charges (e.g., electrons, ions, nuclei, ...), is utterly
complicated if not impossible to calculate. The net in-medium field is

ETrue - Evac + EMicr

» Then it becomes crucial to define a realistic MACROSCOPIC Field:

Definition

MACROSCOPIC Electric field: It is defined as the space average field over an
arbitrary macroscopic volume V of matter which is large enough to contain a
statistically large number (2> 10* —10°) of atoms or molecules of that material,
yet small enough compared to the dimensions of the material sample, in order
to preserve all significant large-scale spatial variations in the field, i.e.,

E(r) = (Emrue(r))y = % /// Etrue(r' — r)dv/,
v

where, for convenience, the integral is defined over a spherical region V.




Macroscopic Electric Fields In Dielectrics (contd.)

The entire dielectric medium can be thought of being composed of sufficiently
finely grained spherical Averaging volumes (like, close-packing of marbles),
such that each spherical volume contains a statistically large number of atoms

or molecules.
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> We henceforth work with Macroscopic Electric field £(r) = (Etrue(r))v, in
dielectrics, which is a conservative field derivable from a coresponding
Macroscopic Potential #/(r) = (Vrrue(r))v, such that

VXxEF)=Vx[-V¥(r)]=0 & 55 E(r)-dr=0.

» Modified Gauss’s Differential Law:
OV-EX) = puoslr) = psle) + pr(r)
= =V-P(r)+pe(r)
V- (0€+P) = pr
— V:-D= Pf
» The field D = o€ + P is termed as the ELECTRIC DISPLACEMENT.
» Modified Gauss's Integral Law:

#DdS:// V'dez///pfdvzof,encl
S % v

where S is an arbitrary closed surface bounding a region of dielectric V
with total enclosed free charge Qf, enci-



Modified Gauss's Law in Dielectrics: Summary
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= pr
V.g = Pt _pptopr
€0 €0
# D-dS = Qf, encl
surface
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surface
The Constitutive Relation: D = e&&+P
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Warning!

» Henceforth, we revert back to using the old symbol E +— &£ for the
Macroscopic Electric Field keeping in mind that it is NOT the same as the
True Electric Field Ervye within a dielectric which in general includes the
Microscopic Background Field Epric:.

> For free space (vacuum), they are equivalent, i.e., &€ = Eyye = E.
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Polarized Sphere
Example

Consider an uncharged dielectric sphere with a “frozen-in" Polarization P =
where k is a constant. Find the Electric field as a function of r.

» Method I: The bound volume & surface charge densities:

k., 10 [ 2k k .
pb(r)=—V'<7'>:‘fza(r 7)27 os=(PF), =

» Total bound charge:

Q = Q(volume + ngsurface) _ ///pb(r)dv' + #abda'
v S
R
/ < ) Amr?dr’ + # —da' = —4nkR + 4TkR = 0
0

> Field outside sphere (r > R): Since (Qr + Qb),,, = 0, then applying
Gauss's Integral Law for E:
1
E- da/ = *Qtot, encl(r) =0
€0
S(r>R)
ErZR(r) = 0

k

r



Polarized Sphere (contd.)

> Field inside sphere (r < R): o, does not contribute in the bulk, then
using Gauss’s Integral Law for E:
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Polarized Sphere (contd.)

> Field inside sphere (r < R): o, does not contribute in the bulk, then
using Gauss’s Integral Law for E:

# E-da = éQm,end ///pb )dv' —*///( ,,z)

s(r<R)

E(4nr?) = 1 (—%) 4rr?dr’ — E(r):—if
r

€0

> Method II: Since Qf, encs = 0, then applying Modified Gauss's Law for D:

# D-da' =Qf ens =0 = D=0, Vr (everywhere)
§

0 if >R
D=cE+P=0 =— E(r)_—P_{_k? ;f :<R

€or

» Notice: Method Il is much quicker without reference to bound charges!
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Long Cylindrical Wire
Example

A long straight wire, carrying uniform line charge density A, is surrounded by
rubber insulation out to radius a. Find the Electric Displacements and Electric
fields everywhere.

Gaussian surface

» Construct a coaxial cylindrical Gaussian surface S of radius s and length L:

# D-dS = Qfienad=AL
S
D(2wsLl) = AL
A
D(s) = (—) §, Vs (everywhere).
27s

» Note: This formula is applicable both inside and outside the cladding.

» Electric Field inside the cladding (s < a): Polarization P as well as the
dielectric constant being unknown, E can not be calculated.
» Electric Field outside the cladding (s > a): Since Polarization P = 0, so
0

D=cE+P — E(s):ln(s):( A )g.

€0 2megs



Boundary Conditions in Dielectrics

5
D, E,
o, | E | A_\ 1
‘ﬁ;’ 2
L
D, E,
> Consider an interface of two dielectrics media (1 & 2) with total surface
charge density o = 0r + o) at the interface and total volume charge
densities pior,1 = pr1+ po1 and pror2 = pr2 + pr2, in the respectively bulks.
» Consider a pillbox-shaped Gaussian surface enclosing area S at the

interface, with negligibly small width, ¢ — 0 in comparison with the base
diameters.



Boundary Conditions in Dielectrics

D

8
1 E,
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D, E,
> Consider an interface of two dielectrics media (1 & 2) with total surface

charge density o = 0r + o) at the interface and total volume charge
densities pior,1 = pr1+ po1 and pror2 = pr2 + pr2, in the respectively bulks.

» Consider a pillbox-shaped Gaussian surface enclosing area S at the
interface, with negligibly small width, ¢ — 0 in comparison with the base
diameters.

» Total enclosed free and bound charges within the Gaussian surface:
Qf enct = 0rS+ %(pn + pr2)S <22 045,

Qb enct = oS+ g(pm + pr2)S =9 5,8.
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» Applying Gauss's Law for D:

|im#D~dS:(D1-ﬁ1+Dz'ﬁ2)5 = Iin’})Qf,enC[:Ufs
e—

e—0
S

(D1 —D2) -fiy =Dy — D2y = oy



Boundary Conditions in Dielectrics

D, > E,
g, & IA_\ 1
2
inl - ‘:\ E,

» Applying Gauss's Law for D:

Iim#D~dS:(D1-ﬁ1+Dz'ﬁ2)5 = lim Qf enct =07 S
e—0 e—0
s
(D1 —D2) -fiy =Dy — D2y = oy
» Applying Gauss's Law for E:
1 1
lim #E -dS=(E1-f1 +Ex-f2)S = = lim Qot,ena = —(0r+0p) S
e—0 €p €—0 €0
s

A 1
(Es—Ex)-fiu=E11 — B = g(o'f + o).



» Macroscopic Electric field being conservative in nature, the circulation of E
around any closed loop must vanish. Choosing a narrow rectangular loop
of length L and vanishing end widths ¢ — 0 straddling across the interface,

lim ygE.dI:E1~L+E2-(—L) = 0
e—0
Loop

(El_E2)ﬁ1H = 0
By = By
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» Macroscopic Electric field being conservative in nature, the circulation of E
around any closed loop must vanish. Choosing a narrow rectangular loop
of length L and vanishing end widths ¢ — 0 straddling across the interface,

lim %E-dI:E1~L+E2~(—L) = 0
e—0
Loop
(El_E2)ﬁ1H = 0
By = By

> Since D = ¢E + P, it follows that D|| = e Ej| + P} and consequently
D = Doy = Prjj = Py

» Similarly, from D} = eoEL + Py
Dy, — D>y = e(EiL —Exy )+ (PiL—Pa2y1)
(of +0p) + (P1L — Pay)

of

Py — P2y
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Boundary Conditions in Dielectrics: SUMMARY
Dy, — Dy = oy,
D) =Dy = Py =Py,
Pit — Py = —oyp,
1
Eyy, —E1 = —(of+o0p),
€0
By = By,
Vi o= Vs,
oVq oV 1
on on T e (or +0b).
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