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Instructions to Students 

 
Introduction: A few simple experiments are designed to demonstrate some laws 
of Physics that you already know. In this course we expose you to the simple 
instruments, handling of these instruments, acquiring data from the instruments, 
measurements, and methodology of data analyses. Interpretation of results, error 
analysis and writing a scientific report are other learning steps of this course. 
PH110 is a unique opportunity of learning physics by doing hands on experiments 
rather than by reading a book. 
 
However, this time this course is going to be online. It will be conducted online 
through MS teams. A laboratory group will be subdivided into six small divisions. 
For example, PH110_L10_Div1, PH110_L10_Div2, …., PH110_L10_Div6 will be 
the name of the MS team groups for Lab group L10. Such divisions will be made 
for all lab groups L1 to L5. The sub-group you belong to will be informed to you. 
Students are supposed to join the corresponding MS team group upon invitation. 
An Instructor/TA will present an online demonstration of a designated experiment. 
A pre-recorded data set will be provided to you. You need to do the calculations 
using the data, perform error analysis, plot graphs (if required). A viva will be taken 
by MS team call by your instructor during the session.  Your calculation, graphs, 
error analysis, and final result with error bars will be verified by your instructor 
during the lab class. Then you submit a report.  
   

 
 

Specific Instructions: 
 

1. Assessment in the course is based on (i) your day to day activity in the lab 
class and (ii) a final quiz involving all the experiments. 

2. Read the instruction manual carefully before joining the lab class. A prior 
study about the details of the experiment is essential for good 
understanding and finishing the calculations in time.  

3. You must be ready with the following materials: paper, pen, pencil, scale, 
graph sheets, calculator and this instruction manual. 

4. You are expected to complete the calculations, data analyses, plotting of 
graphs, error analysis and writing the report of every experiment within class 
duration.  

5. Each graph should be well documented; abscissa and ordinate along with 
the units should be mentioned clearly. The scale used for abscissa and 
ordinate should be mentioned on the graph paper.  The title of the graph 
should be stated on the top of each graph paper.  

6. The maximum possible error of the results should be estimated.  
7. During the laboratory hours, a one to one interactive session will be 

held during the lab class which includes verification of your 
calculations, graph plotting, error analysis, final result and a viva. 
There is 10 marks (6 for report and 4 for viva) for each lab session. 
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8. Following is the format of the report: 

a) Cover page: Experiment number, title of the Experiment, Name, Roll 
no, and date. (Be ready with this page before joining the class). 

b) Objective of the experiment, working formula (you might have to 
derive it starting from the expressions given in the instruction manual 
particularly for the linear fit to the data.), explanation of the symbols 
and diagrams/figures (if required). (Be ready with this page before 
joining the class). 

c) After demonstration, you will be asked to download a data set. Note 
the data set number in your report. 

d) Least count of all the equipment, constants if any to be used and the 
well tabulated observations. Observation tables should be neat and 
self-explanatory. (Typical tabular columns have been given for some 
of the experiments in the manual. You may make your own format). 

e) Relevant substitutions, calculations and error analyses. 
f) Graph/graphs if applicable. 
g) Results along with the error estimates. 
h) Remarks/suggestion/comments if any. 

9. After you finish writing the report, you need to scan it (or take a photo of it) 
and make a single file by the name Rollno_Expn.pdf. For example, a 
student with roll No. 200122005 performed experiment1, then the file name 
should be 200122005_Exp1.pdf.  

10. Upload the report file in the MS team by 12:30 pm on the same day of the 
lab. Closing time is 5:30 pm of the same day. One could make a late 
submission during 12:30-5:30 pm with justification which will be verified by 
the instructor for consideration. For submission during 12:30-5:30 pm 
without justification, there will be deduction of one mark for every half an 
hour delay.  

11. Zero marks will be awarded if report is not submitted. 
12. After performing the experiment as per schedule one must upload/submit 

at least five reports to fulfil 75% attendance criterion, Without five reports 
no final grade will be awarded. 

13. Final mark out of 100 will be calculated by adding marks of (Lab1 + Lab2 + 
----- + Lab6) each of 10 marks and Quiz mark (out of 40). 
 

For details, please consult the PH110 webpage  

https://www.iitg.ac.in/phy/ph110.php 

  

https://www.iitg.ac.in/phy/ph110.php
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Introduction to Error and Data Analysis 

All physical measurements are subject to various types of errors. It is important to 
reduce the effect of errors to a minimum. In order to know the uncertainty in a 
measurement or to know the deviation from the true value of a measured quantity, 
it is important to have an idea of the sources of error as well as their estimates. 
Errors involved in any measurement may be broadly classified as (a) systematic 
error and (b) random error. 
 
(a) Systematic error 

 
Errors that are not revealed through an entire set of measurements are termed 
systematic errors. Systematic errors may arise because of instrumental defect or 
experimental bias. 

 
i. Instrumental errors 

 
Zero offset (instrument does not read zero when input is zero) or incorrect 
calibration of the instrument or changes of calibration conditions (due change in 
temperature, pressure or any other environmental changes) are examples of 
instrumental errors. Zero error can be detected beforehand and all the 
observations are to be corrected accordingly. For the purpose of this course, it can 
be assumed that the given instrument is calibrated correctly.  

 
ii.  Experimenter’s bias 

 
This is a common source of error arising from some bias of the experimenter and 
is difficult to eradicate. For example, parallax error in reading an analog meter is 
often encountered if care is not taken to view the indicator needle perpendicular to 
the meter’s face. 

 

Systematic errors are hard to handle. They are best identified and eliminated. 
 
(b)  Random errors 
Fluctuations in the recording of data or in the instrumental measuring process 
result in random errors.  The effect of random errors can be minimised by 
appropriate data processing techniques. 
 

(c) Probable error 
It is known from experience that the repetitive measurement of a single quantity x 
shows up fluctuating deviations from the average value.  The probability of 
occurrence of these deviations is expressed by the normal distribution, 
 

                                  𝑃(𝑥)𝑑𝑥 =
1

√2𝜋𝜎2
 𝑒𝑥𝑝 [−

(𝑥 − 𝑥̅)2

2𝜎2
] 𝑑𝑥                               (1) 

 



 5 

where P(x)dx is the probability that  the observation lies in an interval x to x+dx, 𝑥̅ 

is the mean and    is the standard deviation. The mean and the standard deviation 
are given by  
 

                    𝑥̅ = ∫ 𝑥𝑃(𝑥)𝑑𝑥

+∞

−∞

    𝑎𝑛𝑑     𝜎2 = ∫ (𝑥 − 𝑥̅)2𝑃(𝑥)𝑑𝑥

+∞

−∞

                    (2) 

 

where    is a measure of spread of observations about 𝑥̅.  For a discrete set of data they 

are given by the expressions, 

                                                               

 𝑥̅ =
1

𝑁
 ∑ 𝑥𝑖

𝑖

        𝑎𝑛𝑑    𝜎2 =
1

𝑁 − 1
∑(𝑥 − 𝑥̅)2

𝑖

                                            (3)    

 

where N is the total number of observations. Standard error is defined as 
 

                                 𝑒𝑟 =
𝜎

√𝑁
                                                           (4) 

 

Maximum possible error 
Most of the experiments involve measurement of several different quantities which 
are combined to arrive at the final deduced quantity y.  Measurement of each of 
these quantities is limited in accuracy by the least count of the instrument.  These 
errors give rise to a maximum possible error.  It can be estimated in the following 
manner. 
              
Suppose the physical quantity, y, is given by the relation 
 

                                          xCxy
nm

21
=                    (5)  

 

where C, m and n are known constants.  Experimental determination of y involves 
measurement of x1 and x2.  The overall maximum uncertainty or maximum possible 

error in y is given in terms of errors x1 and x2 in the quantities x1 and x2 
respectively, by 
 

   y

y
= |m|

x

x

1

1

+  | n |
x

x

2

2

         (6) 

 

Note that both contributions add up to give the maximum possible error in y, 
irrespective of whether m or n is +ve or -ve. 
 
This can be illustrated with the help of the following example: 
 
The electrical resistivity of a wire of circular cross section is given by 
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               = 
r V

l I

2

       ( 7) 

where r is the radius and l is the length of the wire, V is the voltage and I is the 
current flowing through the wire.  The maximum possible error in the measurement 
of resistivity 













 depends on the fractional uncertainties in the voltage

V

V


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


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I







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etc. and is given by 
 
 

   
    


= + + +2

r

r

l

l

V

V

I

I
      (8) 

 
 
 

Data analysis 
 
From experiments, one usually collect N data points (𝑥𝑖, 𝑦𝑖) where 𝑖 = 1, ⋯ , 𝑁. 
Using such raw data, new quantities need to be estimated. During such estimates 
one must consider propagation of errors and keep data up to right decimal points.  
 
Very often it is found that the data follow a linear relationship. Fitting of a straight 
line through the data points is required to estimate the slope and constant of the 
linear equation. This is usually done by linear least square fitting of the data points 
as discussed below. 
 

 

Least squares fit 
 
When the data (𝑥𝑖, 𝑦𝑖) are linearly related by         
 
                  𝑦 = 𝑎𝑥 + 𝑏     (9) 
 
the best estimates for the slope a and intercept b of the straight line are obtained 
as follows: If y is the true value as defined by the equation (9), then one should 
minimise the quantity 
 

𝜒2 = ∑(𝑦𝑖 − 𝑎𝑥𝑖 − 𝑏)2

𝑁

𝑖=1

 

 
with respect to a and b. By differentiating this expression w.r.t.  a and b, setting 
them to zero and solving the two simultaneous equations, we get the best 
estimates of a and b as 
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After obtaining the values of a and b, plot the straight line y = ax + b using these 
values.  Plot the observed points too on the same graph.  See how well the data 
are clustered around this straight line.   
 
Quite often you may be able to reduce the equation to the linear form by a suitable 
rearrangement.  For example, if y = cex, then lny = lnc + x, so a plot of ln(y) vs x 
would be a straight line. 
 
Reference 

1. John R Taylor, An Introduction to Error Analysis, Second ed, University Science 
Book (1996). 
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Exp.1: Fly Wheel 
 

Objective 

To determine the moment of inertia of a flywheel about its own axis of rotation. 

 

Apparatus: 

Flywheel, meter scale, Vernier calliper, stop watch, inextensible thread, weights and a pan. 

  

Theory:                                                                                                    

In order to find the moment of inertia of the fly 

wheel about the fixed axis of rotation, a mass m 

(including the mass of the weight hanger) is attached 

to the axle of the flywheel by a thread which is fixed 

at the other end with P and wrapped several times 

(say in n1 turns) over the axle of the fly wheel. If the 

mass m is left free, it would descent under the gravity 

freely setting the fly wheel in rotation. The height h 

of the mass m from the floor level before it starts 

descending is so adjusted so that when it strikes at 

the floor, the thread leaves the axle.  

 

From the principal of conservation of energy,                                       
                                                                                                                            

𝑚𝑔ℎ =
1

2
𝐼𝜔2 +

1

2
𝑚𝑣2 + 𝑛1𝑓   (1) 

 

where n1 is the number of revolutions fly wheel 

makes till the instant mass m is detached from the 

axle, v is linear velocity of mass m,  is angular 

velocity of the wheel at the instant when thread 

leaves the axle, f is the energy used in overcoming 

the frictional forces during one rotation and I is the 

moment of inertia of the wheel and axle about the 

fixed axis of rotation.  

 

 

            Angular velocity of the fly wheel is measured by counting the number of revolutions 

n2 made by the wheel and correspondingly recording the time t. It is given by 

                             

 

𝜔 =
4𝜋𝑛2

𝑡
      (2) 

 

Let’s assume that the fly wheel completes n2 rotations in order to come to rest after the 

thread leaves the axle. Thus, 

1

2
𝐼𝜔2 = 𝑛2𝑓     (3) 

 

ℎ 

𝑚 

Axle 

Flywheel 

2𝑟 

Ground 

Fig.1 
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Substituting Eq. (3) into Eq. (1) gives,  

 

𝑚𝑔ℎ =
1

2
𝐼𝜔2 (1 +

𝑛1

𝑛2
) +

1

2
𝑚𝑣2   (4) 

 

Further, if the radius of the axle of the fly wheel is r, then v = r. Thus, moment of inertia 

of the fly wheel is given by 
 

𝐼 =
𝑚𝑔ℎ𝑡2

8𝜋2𝑛2(𝑛1+𝑛2)
−

𝑚𝑟2𝑛2

(𝑛1+𝑛2)
     (5) 

 

 

Procedure: Adjust the length of the thread so that when mass m touches the floor, the 

other end of the thread remains just attached to the axle. Use the following procedures 

step-by-step: 

 

1. Attach a mass to one end of the thread. Wrap the other end of the thread n1 (an 

integer) rounds on the axle without any overlap. Ensure that the fly wheel makes 

around 40-50 rotations once the thread leaves the axle.  

2. Measure the height (h) of the weight hanger from the floor.  

3. Release the flywheel. The pin P slips off from the peg when the weight hanger just 

touches the ground. By this time, the flywheel would have made n1 rotations.  

4. Just when the thread gets detached from the axle after n1 turns, start the stop watch. 

Count the number of revolution n2 before the flywheel comes to rest. Stop the stop 

watch at this moment. Thus n2 and t are known.  

5. Repeat “steps 1-5” for at least three different values of m. 

6. With the help of a Vernier calliper, measure the diameter of the axle at several 

points in one direction as well as for the points in the corresponding perpendicular 

directions. Measure the length of the wrapped thread with the help of meter scale. 

 

Observations: Determination of n1, n2 and t:  

Least count of the stop watch =  

Least count of the meter scale  
 

S 

No 

Total 

mass 

hanged 

m (kg) 

Height 

above the 

ground 

h (m) 

n1 n2 

Time for n2 

revolutions, t 

(sec) 

Mean 

n2 

Mean t 

(sec) 
𝜔 =

4𝜋𝑛2

𝑡
 

rad/sec 

1  

  
  

   
  

  
  

   
  

2 
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Determination of radius of the axle:  Least count of the Vernier caliper =  

Zero error of the Vernier caliper   = 

 

 

S 

No 

Reading along any 

direction 

Reading along 

Perpendicular Direction 
Axle 

diameter, 

(X+Y)/2 

cm 

Mean 

axle 

radius 

r = d/2 

cm 

Main 

Scale 

Vernier 

Scale 

Total 

X cm 

Main 

Scale 

Vernier 

Scale 

Total 

Y cm 

1         

2         

3         

 

Radius of the axle =  

 

 

Calculation:  

Following procedures should be adopted for the calculation of I:  

1. Calculate I for every m and h combinations using Eq. 5. Find out the average value 

of I. 

2. Consider identical h for all m in the first table. Plot 2gh/2 vs 
1

𝑚
(1 +

𝑛1

𝑛2
) graph by 

least squares fitting. Calculate I and r from the graph.  

3. Compare the value of I and r obtained from the graph and from step 1. 

4. Determine maximum possible error in the measurement of I. 
 

Reference: 

1. Resnick & Halliday, Fundamentals of Physics, John Wiley & Sons (1981). 

2. B. L. Worshnop and H. T. Flint, Advanced Practical Physics, Khosla Pub House 

(1991). 
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Exp.2: Jaeger’s Method 
 

Objectives: 

To determine the surface tension of a given liquid by Jaeger’s method. 

 

Apparatus: 

Jaeger’s apparatus, travelling microscope, adjustable stand. 

 

Theory:  

The apparatus used by Jaeger is depicted in Fig. 1. This apparatus consists of a bottle B to 

which a funnel F is attached in order to pour liquid into it. Another glass tube containing 

the manometer M and a capillary tube C is attached to the bottle B. The end of C is drawn 

into a fine capillary tube with a circular orifice and is dipped to a depth h into the liquid 

whose surface tension is to be determined. Liquid rises in the capillary tube up to a certain 

height. Now if the liquid is allowed to slowly enter into the bottle B from the funnel though 

the stop-cock S1, an equal amount of air is pushed out of the bottle into the tube with the 

manometer and capillary tube C, thereby compressing the liquid in C. The liquid column 

in C is pushed down and the air escapes in the form of a bubble at the end of C. The radius 

of the bubble gradually decreases with increasing pressure inside it and finally reaches a 

minimum value, which is equal to the radius (r) of orifice at the open end of C. Two 

external pressures act on the bubble 

at this stage. When the two 

pressures are equal, the bubble 

becomes hemispherical. Any slight 

increase of the inner air pressure at 

this stage upsets the stability of the 

bubble and it gets blown out of the 

end of C. Let us consider 

equilibrium of the air bubble just 

before its detachment from the 

orifice of C. If P is the atmospheric 

pressure, then the pressure acting 

from inside the air bubble is 

 

   𝑃𝑖𝑛 = 𝑃 + 𝐻𝜌𝑔        (1) 

 

where H is the maximum difference in the level of liquid in the manometer and  

is the density of the liquid in the manometer. At the same time pressure outside the 

bubble is 

   𝑃𝑜𝑢𝑡 = 𝑃 + ℎ𝜎𝑔       (2) 

 

where  is the density of the liquid for which surface tension is to be measured. 

The excess pressure inside the bubble over the outside is 

 

   𝑃𝑒𝑥𝑐𝑒𝑠𝑠 = (𝑃 + 𝐻𝜌𝑔) − (𝑃 + ℎ𝜎𝑔)     (3) 

 

But the excess pressure within the air bubble in a liquid is 2T/r. Hence, 

H 

S2 

S1 

h M 

C 

F 

B 

T 

Figure 1: Experimental set-up for Jaeger’s method. 



 12 

 

   𝑇 =
1

2
𝑟𝑔(𝐻𝜌 − ℎ𝜎)      (4) 

 

The unit of surface tension is “Newton/meter”.  

 

Procedure: Measurement of orifice radius of the capillary tube using the travelling 

microscope   

In order to measure orifice radius, following procedures have to be executed step-by-step: 

1. Clamp the capillary tube on the holder in horizontal position.  

2. Arrange microscope in horizontal position and in line with the horizontal axis of 

the capillary tube. 

3. Focus microscope on the orifice of the capillary tube.  

4. Now adjust the microscope in such a way that the vertical crosswire coincides with 

the left end of the orifice of the capillary tube (Fig. 2). Note down the reading. 

5. Bring the vertical crosswire on the right end of the 

orifice of the capillary tube. Note down the reading.  

6. Now adjust microscope so that the horizontal crosswire 

becomes tangent to the lower end of the orifice. Note 

down the reading.  

7. Bring the horizontal crosswire on the upper end of the 

orifice of the capillary tube. Note down the reading. 

From the observations you will get two values of diameter, one 

for vertical and one for the horizontal. Repeat the diameter 

measurement at least thrice for both the directions. Be careful 

to avoid backlash error and move the microscope in one direction for both measurements.  

 

Measurement of surface tension by Jaeger’s method: Referring to Fig. 1, first ensure 

that the bottle B is tightly closed and there is no leakage of air from any point where rubber 

tubes/cocks are used to connect glass tubes/capillary. Now, in order to carry out the  

experiment, following procedures have to be executed step-by-step: 

1. Fix the capillary tube “C” so that it stands vertically as shown in Fig. 1. Dip it inside 

the liquid whose surface tension is to be measured. The immersed height should be 

~3-4 cm.  

2. Measure h with the help of the microscope. For this, the travelling microscope 

should be first focused on the lower end of the capillary tube “C” with horizontal 

crosswire coinciding with the lower end of the capillary tube. Note down the 

reading. Now, focus in a way that the horizontal crosswire coincides with the water 

level. Note down the reading. Difference of these two readings leads to h. Be careful 

to avoid backlash error and move the microscope in one direction for both 

measurements. 

3. Open S1 slightly so that the liquid falls into the bottle B. Adjust S1 & S2 so that a 

sufficient gap is maintained in the formation of successive air bubbles at the 

immersed end of the glass capillary C. Using the travelling microscope, record 

maximum difference in the height of the liquid in the two arms of the manometer 

just when bubble attains a radius equal to the radius of the orifice of the capillary 

tube. 

4. Repeat “step 3” at least five times for same h and then several times by varying h. 

Figure 2: Measurement of 
orifice radius. 
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Observations: Measurement of radius of the orifice of the capillary tube: 

Least count of the microscope = 

S. 

No

. 

Microscope reading in one 

direction 

Microscope reading in 

perpendicular direction Mean 

dia 

(cm) 

Mean 

radius 

(cm) 
One 

End 

(cm) 

Other 

End 

(cm) 

Diameter 

(cm) 

One 

End 

(cm) 

Other 

End 

(cm) 

Diameter 

(cm) 

1         

2         

3         

 

Measurement of H and h: 

Room temperature =  

Density () of the liquid in the manometer at room temp = 

Density () of the liquid for which surface tension is to be measured at room temp = 

S. 

No. 

r 

(cm) 

h 

(cm) 

Manometer reading H (cm) 

(y – x)  

Mean  

H  (cm) Lower end (x) (cm) Upper end (y) (cm) 

1 

      

   

   

..       

Average H = 

Calculation:  

Following procedures should be adopted for the analysis:  

1. Calculate T using Eq. (4) for room temperature for the given liquid. Compare the 

obtained value from the theoretical value for the given liquid.  

2. Estimate maximum possible error in the measurement made by both the methods. 

 

Reference: 

1. Resnick & Halliday, Fundamentals of Physics, John Wiley & Sons (1981). 

2. B. L. Worshnop and H. T. Flint, Advanced Practical Physics, Khosla Pub House 

(1991). 
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Exp.3: Magnetic field along the axis of a circular coil 
 

Objective: 

To measure the magnetic field along the axis of a circular coil in the presence of the 

Earth’s magnetic field. 

 

Apparatus: Stewart and Gee galvanometer, constant current supply, commutator, plug 

key, spirit level. 

 

Theory: 

In this experiment, the coil is oriented such that the plane of the coil is vertical and parallel 

to the magnetic north-south direction. The axis of the coil and the field produced by the 

coil are parallel to the east-west direction (Figure 1). The net field at any point x along the 

axis, is the vector sum of the fields due the coil B(x) and earth BE. The ratio of the two is 

given by 

 

                                      tan 𝜃 =
𝐵(𝑥)

𝐵𝐸
 

 

𝐵(𝑥) = 𝐵𝐸 tan 𝜃                                        (1) 

 

           

   
            

      Fig 1                         

               

For a circular coil of n turns, carrying a current I, the magnetic field along its axis is 

given by 
                                                           

                 B(x) = 
2

2

0nIR

( )

1

2 2
3

2R x+

                                                        (2) 

 

where R is the radius of the coil.                                  

 

 

Procedure: 
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1. The apparatus consists of a coil mounted perpendicular to the base. A sliding 

compass box is mounted on graduated aluminium rails so that the compass is 

always on the axis of the coil. 

2. Orient the apparatus such that the coil is in the north-south plane using the 

orientation of the magnet in the compass box. (You may use the red dot on the bar 

magnet as reference). Adjust the levelling screws to make the base horizontal. 

Make sure that the compass is moving freely. 

3. Place the compass box at the centre of the coil. 

4. Connect the circuit as shown in the figure 2. 

 

Fig. 2 

 

5. Place the compass box at the centre of the coil and rotate it so that the pointer 

(needle) indicate 0-0. 

6. Close the keys K and KR (make sure that you are not shorting the power supply) 

and adjust the current with the potentiometer, Rh so that the deflection of the pointer 

is between 50 to 60 degrees. The current will be kept fixed at this value for the rest 

of the experiment. 

7. Note  down the readings 1 and 2.  Reverse the current by suitably connecting the 

keys of KR and note down 3 and 4. All  values should be in suitable units. 

8. Repeat the experiment by moving the compass box at intervals of 2cm along the 

axis until the value of the field drops to 10% of its value at the center of the coil. 

9. Repeat the procedure by moving the compass box on the other side of the coil. 

10. Plot B(x) = BE tan  against x. 

11. Identify the values of B for x = 0, 10 cm & 20 cm from the graph and compare with 

the theoretical value calculated from eqn(2). 

12. Estimate the maximum possible errors in B at these positions 

 

Observation 

No of turns of the coil, n =.........     

Radius of the coil,      R = 10cm 

Current in the coil,      I =......... 

Permeability of air,      0 = 4  10 −7 N/A 2  

Earth’s magnetic field, BE =0.3910-4 T 
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x  1  

 

 2  

 

 3   4  
4

  avg Tan
4

  

       

 

Reference: 

1. Resnick & Halliday, Fundamentals of Physics, John Wiley & Sons (1981). 

2. D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall (1995). 
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Exp.4:  LCR Circuit 

 
Objective: To determine the resonant frequency and the quality factor for a given LCR 

circuit. 

 

Apparatus: Signal generator, Cathode Ray Oscilloscope, wish board and passive 

electronic components (resistors, inductor, capacitor). 

 

Theory 

Let us consider a simple harmonic driving force given by F(t)=Fo cos (t) on a damped 

oscillator. The equation of motion for such a system can be written as  

 
2

2
2 cos( )oFd x dx

kx t
dt dt m

 + + =     (1) 

 

where, 2 is the damping coefficient, k is the spring constant and  is the angular frequency 

of the driving force.  

 

 

Figure 1 

 

 

At steady state, the instantaneous displacement is given by 

 

cos( )x A t = +       (2) 

 

where  is the phase difference between the displacement and the driving force given by 

 

2 2

2
tan

o




 

−
=

−
      (3) 

o is the natural frequency of oscillations and A is the maximum amplitude of oscillations 

given by 
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( )

1/ 2

2
2 2 2 2

1

4

o

o

F
A

m    

 
 =
 − +
 

    (4) 

 

From Eq. 4, the amplitude of oscillations will be maximum at the resonance, when the 

frequency of driving force is equal to the natural frequency of oscillation,  = o. A very 

good example of the physical system described by Eq. 1 is a series LCR circuit connected 

to a sinusoidal voltage source (function generator) as shown in Fig. 1. The resonance 

(natural) frequency for this circuit is given by  

1
o

LC
 =        (5) 

 

If the voltage applied from the function generator is given by 

 

( ) ( ) sinin o inV V t=       (6) 

 

then the equation governing the current in such a circuit is given by 

 

( )

1
sino in

dI
L RI idt V t

dt C
+ + =     (7) 

 

Differentiation of Eq. 7 will give an equation similar to Eq. 1. Hence the circuit of Fig 1 

can be treated as a forced damped harmonic oscillator whose amplitude of current given 

by 

 

( )

2

2 1

o in

o

V
I

R L
C




=

 
+ − 
 

     (8) 

  

From the above equation, the current in the circuit will be maximum corresponding to the 

resonance frequency of the circuit given by Eq. 5. A typical graph, with the applied 

frequencies as abscissa and the current amplitude as ordinate, is shown in Fig. 2. 

As can be observed, the current is maximum at  = 0. Furthermore, as the 

resistance in the circuit decreases, the curves get narrower and taller. The sharpness 

of curves is usually described by a dimensionless parameter known as the quality 

factor (or Q-factor), denoted by  

 

    𝑄 =
𝜔0

∆𝜔
      (9)  

 

where  is the width of the curve measured between the two values of  at that current 

falls to the 1/√2 of its maximum value and termed as bandwidth or full-width-at-half-

maximum (FWHM).  One can also determine Q from the graph plotted with the applied 

frequencies as abscissa and the VR as ordinate. Physically, Q is defined as  
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   𝑄 = 2𝜋
𝐸𝑛𝑒𝑟𝑔𝑦 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑙𝑜𝑠𝑡 𝑝𝑒𝑟 𝑐𝑦𝑐𝑙𝑒 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚
  (10)  

 

Maximum energy stored in the inductor is LI2/2 with I =Imax. At this instant, I and VC are 

90o out of phase, and hence, no energy is stored in the capacitor. The energy lost in one 

cycle is I2
rmsR2/0 = I2

maxR/0. Using Eq. (10),  

 

   𝑄 =
1

𝑅
√

𝐿 

𝐶
       (11)  

 

 

                                                     Fig. 2 

 

 

Procedure  

1. Assemble the circuit as shown in Fig. 1. 

2. Set the function generator for sinusoidal signal and adjust the amplitude of the signal 

to some suitable value (around 1 to 2 V) and keep it constant, throughout the 

experiment for each reading. 

3. Record the voltage drop across the resistance R as a function of frequency in a suitable 

step. Make sure that you have sufficient data points on either side of the resonance 

frequency (so as to measure the value of   ). 
4. Plot the graph between frequency and the amplitude of voltage VR. 

5. Find the resonance frequency  and the FWHM  from the plot.  

6. Find the Q factor. 

7. Estimate the maximum possible error in the measurement of Q. 

 

 

 

 

 

 

 

 

 

 

0 

R = R1 

I0, max 

 

R = R2 

R1 < R2 
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Observation: 

    Least count of Signal generator= 

    Least count of CRO= 

    L= 

    C= 

    R= 

 

S. 
No. 

Frequency f 
(kHz) 

 =2f 
Input voltage 

(V) 
Voltage across R 

(V) 

1 2.5    

2 3.0    

3 3.5    

..     

 

Reference: 

1. Resnick & Halliday, Fundamentals of Physics, John Wiley & Sons (1981). 

2. H. J. Pain, Physics of Vibrations and Waves, Wiley (2006). 
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Exp.5: Study of Hall Effect 

 
Objective: 
To study the Hall effect in extrinsic semiconducting samples and determine type, density 

and mobility of majority charge carriers. 
 

Apparatus: Hall effect set-up, constant current supply, Electromagnet, Gauss meter with 

Hall probe, Digital milli-voltmeter, bar magnet. 

Theory: 

Consider a rectangular slab of semiconductor with thickness d kept in XY plane (see Fig. 

l). An electric field is applied in x-direction so that a current I flow through the sample. If 

w is width of the sample and d is the thickness, the current density is given by Jx=I/wd. 

 

 

 

Y                        

                                                                 

                                                     X                                                     q                             w 

                                                                             VH 

          Z                                        JX                                                          

                                                                                                                   d                                        

                                                                                         

                               B 

 

 

Fig. 1 

Now a magnetic field B is applied along positive Z- axis (Fig. 1). Appearance of voltage 

difference in the mutually perpendicular direction under such conditions is called as Hall 

effect. The moving charges are under the influence of magnetic force 









→→

Bvq , which 

results in accumulation of majority charge carriers towards one side of the material (along 

Y-direction in the present case). This process continues until the electric force due to 

accumulated charges (qE) balances the magnetic force. So, in a steady state, the net Lorentz 

force experienced by charge carriers will be zero and there will be a Hall voltage VH 

perpendicular to both current and the field directions. Thus under steady state condition, 

0=







+=

→→→→

BvEqF           (1) 

where 
→

v  is the drift velocity of charge carriers. In the present case eq. (1) can be written 

as, 

Ey = vBz = (Jx/nq)Bz                                     (2) 

 



 22 

where n is the charge density. The ratio (Ey/JxBz) is called the Hall co-efficient RH. Here n 

is the density of charge carriers and ‘q’ is the charge of each carrier. Thus 

RH = Ey/JxBz = VHd/IB                  (3) 

 

From equation (2) and (3) the Hall co-efficient can also be written as 

 

RH =1/nq            (4) 

 

From the equation (4) it is clear that the type of charge carrier and its density can be 

estimated from the sign and the value of Hall co-efficient RH. It can be obtained by studying 

the variation of VH as a function of I for a given B. 
 

Experimental Set-up: 
 

Sample in the form of a thin rectangular slab is mounted on a sun mica sheet with four 

spring type pressure contacts.  A pair of green colour leads is provided for current and 

another pair of red colour for Hall voltage. Note the direction of current and voltage 

measurement carefully. Do not exceed current beyond 8 mA. 

The unit marked "Hall Effect Set-up" consists of a constant current source (CCS) for 

supplying current to the sample and a digital milli voltmeter to measure the Hall voltage. 

The unit has a single digital display used for both current and Hall voltage measurement. 

For applying the magnetic field, an electromagnet with a constant current supply is 

provided with a toggle switch to choose either.  It is capable of generating a magnetic field 

of upto 0.75 tesla for 10mm gap between its pole pieces. The magnetic field can be 

measured using the gauss meter along with the given Hall probe. 

 

Procedure: 
1. Connect the leads from the sample to the "Hall effect Set-up" unit.  Connect the 

electromagnet to constant current supply. 
 

2. Switch on the electromagnet and set suitable magnetic field density (<0.3 tesla) by 

varying the current supplied to the electro-magnet. You can measure this magnetic 

field density using the Hall probe. Find out the direction of magnetic field using the 

given bar magnet. 

 

3. Insert the sample between the pole pieces of the electromagnet such that I, B and V 

are in proper direction (Fig.1). 

 

4.   From the direction of current and magnetic field, determine the direction of 

accumulation of majority carriers. Connect the one of the Hall voltage probes into 

which charge carriers are expected to accumulate to the positive side of the milli 

voltmeter. Connect the other Hall voltage probe to the negative side of the milli 

voltmeter. Don’t change this voltmeter connection throughout your experiment.  

 

5.    Record the Hall voltage as a function of sample current. Collect four sets of 

readings: V1(B,I), V2(B,-I), V3(-B,I) and V4(-B,-I) for each current; V1 is for 

positive (initial) current and field, V2 is for the reverse current, V3 is for reverse 

field, V4 is for reverse field and current. Note that field direction can be changed 
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by changing the direction of current through the electromagnet.  The Hall voltage 

VH is obtained by, 

 

  VH = [V1(B,I) – V2(B,-I) – V3(-B,I) + V4(-B,-I)] /4                     (5) 

             

  Thus the stray voltage due to thermo-emf and misalignment of Hall voltage probe    

            is eliminated. 

 

6. Plot VH vs I graph by least squares fitting. Calculate RH and majority charge 
carrier’s density from this graph. 

7. Determine the type of majority charge carriers. 

8. Estimate maximum possible errors in the measurement of Hall co-efficient. 

 

Observation Table 

 

S. 
No. 

Sample 
current I 

(mA) 

V1(B,I) 
(mV) 

V2(B,-I) 
(mV) 

V3(-B,I) 
(mV) 

V4(-B,-I) 
(mV) 

Hall voltage 
VH 

(mV) 

1       

2       

3       

..       

 

Reference: 

1. Resnick & Halliday, Fundamentals of Physics, John Wiley & Sons (1981). 

2. D. J. Griffiths, Introduction to Electrodynamics, Prentice Hall (1995). 
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Exp.6: Newton’s Ring   

 
Objective: 

To determine the radius of curvature of a Plano-convex lens by means of Newton’s rings 

method. 

 

Apparatus: 

Lens, glass plate, beam-splitter, Sodium lamp, travelling microscope. 

 

Theory: 

Optical interference corresponds to the interaction of two or more light waves yielding a 

resultant irradiance that differs from the sum of the component irradiances in the space. 

There are two ways to observe interference. These are “division of wavefront” and “division 

of amplitude”. One of the elegant ways to experience the interference phenomena 

employing “division of amplitude” is Newton’s rings method as depicted in Fig. 1.  

 

 
 

Here a plano-convex lens L (it can also be a convex lens) is placed over an optical flat 

(plane glass plate G). In this arrangement, a thin air film is formed in between the curved 

surface of the lens and the optical flat. Thickness of the air film is zero at the point where 

the lens touches the optical flat (with no dust) and gradually increases while moving 

radially outward towards the circumference of the lens. This system is illuminated at 

normal incidence with monochromatic/quasi-monochromatic (such as sodium vapour 

lamp) light through a beam-splitter (BS) as shown in Fig. 1. Light waves reflected from 

upper and lower surfaces of the air-film trapped between L and G interfere. Under normal 

illumination, at a fixed r (i.e., at a fixed d) the optical path length between the two reflected 

light wave beams would be 2nfd where nf is the refractive index of the film trapped between 

L and P. If the film is of air, nf is 1. Interference minima will occur at this point if this 

optical path length is equal to the wavelength of the light . It’s worth mentioning that the 

film thickness d will be constant over a circle, hence, this interference minimum will be 

circular in shape. In general, where ever the following condition would be satisfied 
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2𝑛𝑓𝑑𝑚 = 𝑚          (1) 

 

a family of concentric minima would be observed. In between the interference minima, 

there would be interference maxima, where the film thickness will be in accord with the 

relation 

 

2𝑛𝑓𝑑𝑚 = (𝑚 +
1

2
)          (2) 

 

 

Figure 2: Newton’s rings. 

 

Such rings in the interference pattern depicted in Fig. 2 are known as Newton’s ring (as it 

was Issac Newton, who first measured fringe radii). Refereeing back to Fig. 1, r and d can 

be related as  

 

𝑟2 = 𝑅2 − (𝑅 − 𝑑)2 = 2𝑅𝑑 − 𝑑2       (3) 

 

Here, R is the radius of curvature of the plano-convex lens. Since R>>d, Eq. (3) reduces to 

 

𝑟2 = 2𝑅𝑑          (4) 

 

Using Eq. (1) and Eq. (4), radius of mth dark ring comes out as 

 

𝑟𝑚 = √𝑚𝑅/𝑛𝑓         (5) 

 

 

Procedure: 

In order to carry out the experiment, execute the following procedures step-by-step: 

1. Mount the glass plate P and fix the beam-splitter BS in the slots provided in the 

experimental set-up. Maintain BS at an angle of 45o from vertical in order to achieve 

normal illumination. As the rings are viewed with the help of travelling microscope, 

focus the microscope at the top surface of the plate P. For this, keep a small piece of 

paper with a cross marked by pen on the plate P and focus microscope in a way that 

a very clear image of the cross is seen through the microscope. 

2. Remove the paper. Mount the lens L in a way that the spherical surface of the lens 

comes into the contact with G. Maintain the flat surface of L in the horizontal plane. 

Newton’s rings will be immediately observed through the microscope.  

3. Rotate the cross-wires in the microscope in a way that one cross wire is tangential to 

the ring and the other passes through the center of Newton’s ring. Move the 

microscope along the horizontal scale till the tangential cross wire coincides with the 
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11th ring from the center. Moving back, bring the cross wire in a tangential position 

to the 10th ring.  Record the main and Vernier scale readings.  

4. Now while moving in same direction, record the main and Vernier scale readings for 

9, 8, ……, 1, -1, -2, ……, -10th ring; that is, on both the sides of the central fringe. 

5. Plot Dm
2 versus m. 

6. Estimate R = nfDm
2 /4m by least squares fitting to data points. 

7. Calculate error in R for both the methods and make a comparative analysis of your 

experimental findings. 

 

Observations:     

   Least count of the travelling microscope = 

   Average wavelength of the light = 589.3 nm 

 

Ring 
No 
(m) 

Microscope reading Rings 
diameter Dm 

= R - L 
(cm) 

Dm
2 LHS (L) RHS (R)  

Main 
scale 

Vernier 
scale 

Total 
(cm) 

Main 
scale 

Vernier 
scale 

Total 
(cm) 

10         

9         

..         

..         

2         

1         

 

 

Reference: 

1. E. Hecht, Optics, 3nd Ed, Addison-Wiley (2008). 

2. A. Ghatak, Optics, 4th Ed, McGraw-Hill, (2009). 

 

 

 

 

 

 

 

 

 


