PH101

Lecture 12



Principle of Least Action

dL(q;,qj,t) »Lagrangian of system of particles

2
O Action integral — j L(qj, q,-, t)dt

t1

1 A mechanical system will evolve in time in such that action integral
is stationary — Hamilton’s Principle of Least Action

to 2
j L(q]-, qj, t)dt — Stationary — § f L(qj, q;, t)dt =0
t1 5]

[ Stationary condition of Action integral

i O_L _ O_L —0—  Lagrange’s equation from Variational
dt \0q; dq; principle



symmetries and conservation laws



Cyclic coordinates, symmetries and

conservation laws

Cyclic coordinate (q;) Corresponding generalized (canonical)
‘ momentum (p; = aa—,L) conserved
qj
L 1s independent of the particular -

System 1s symmetric under translation
in generalized coordinate g;

cyclic coordinate (q;).
q; — q; + 8q; has no effect on L.

»

] Symmetry in generalized coordinate gives rise to a conserved canonical

momentum.

Example: For planetary motion

1 : GM
L =Em(7"2 +7120%) + =

T
L 1s independent of rotation angle 8(cyclic coordinate), the system has rotational symmetry

[symmetric under translation in 8 — 6 + 60) , the system remains the same after change in 6.

As 6 is cyclic, corresponding generalized (canonical) momentum pg = mr?6=Constant;
which is nothing but angular momentum.

Conclusion: Conservation of angular momentum is related to rotational
symmetry of the system.



Translational symmetry and homogeneity of Sp

J Homogeneity of space: Space is such that in a particular direction, all
the points are equivalent.

>N

1 Homogeneous in X-direction—Potential at
every point along the line

L(x,y,z) = L(x',y,2)

111 | >

> Y

1 Homogeneous along X-direction— L is invariant under
translation along X-direction— p, conserved

1 Homogeneous along Y-direction— L is invariant under
translation along Y-direction— p,, conserved.

1 Homogeneous along Z-direction— L is invariant under
translation along Z-direction— p, conserved



Rotational symmetry and isotropy of space

] Isotropy of space: Different directions around a point are all
equivalent (at the same distance from that point).

U Thus—
L(r,0,9,y) =L(r,0', @', y), function of r
only.

Isotropy of space= Rotational symmetry of
the system in both 8, ¢ and vy

U All the directions are equivalent

U Potential energy in different directions (at the same distance from a
particular point) must be same, as all directions are equivalent.

O Thus L(r), independent of 6, ¢ and . , L is invariant under rotation.

d p, and pg and py are conserved.



Symmetry and conservation laws

Homogeneity of space I:> Conservation of linear momentum

(Translational symmetry)

Isotropy of space |:> Conservation of angular momentum
(Rotational symmetry)

Homogeneity in time?

L(aj.q;.t) = L(q;,q;.t")
Only possible if L does not have
explicit time dependence

Homogeneity in time

(“translation” in time) |:> Conservation of energy

O If L does not explicitly depend on time, then energy of the system is
conserved, provided potential energy is velocity independent.



Homogeneity in time leads to energy conservatio

QL= L(Ch: - dn, q.l' ST qn, t)

1 Using the chain rule of partial differentiation

aL oL +zaL. +6L
dt aq]qf Loq; U Bt
J
dL oL d (0L\ 0L O Using Lagrange’s
ar =~ 2.ag, " + ) ailag )t —— e
J d [ JdL oL i
@_zd oL\, oL a\04;) 94,
dt ~ Zudt\ag, V)" ot
J
d oL Z +6L_0
dt 0q; ag; U~ ot T 1]
J
U If L does not have explicit time dependence L ¢
oL ——¢q; — L = Constant
i,e —=20 :> - aCI] /

ot i 2




9L _ O sL=T—V

 If V does not depend on generalized velocity, ;: = 0; 90, 34,
j j j

O If L does not explicitly depend on time (a—L = 0) and V is velocity independent,

oT

Dy 20, gj — L = Constant

 For a single free particle T = %m(a’cz + y2% + z%)
oT

j 94

 The relationship is true for General case as well,

Euler’s theorem: If f(x;) is a homogeneous function of the n, degree of set
. of .
of variables x;, then ), ; a—xjx]- = nf.
 Kinetic energy T is a function of 2" degree of generalized
velocities g

—q; =mxx +yy +zz) = 2T




Proof continue...

oT oT .
=—q; — L = Constant Now. —q; = 2T
+ 04 g

Vs

(2T — L) = constant
(2T — T + V) = constant
T +V = constant

Conclusion, T + V = E = constant,
if L does not explicitely depend on time
and potential is velocity indepdent

] Total energy conserved if

>

L does not depend not explicitly depend on time—Change in time does
not cause any change in the form of L -»Homogeneity in time



Summary

O Principle of least action: Action I= |, :12 L(q e t)dt is stationary

d(oL) oL _ .

O If L does not have explicit time dependence, i,e L = L(qq,...qn, G4, ----Gn)

oL ] L C tant
——q; — L = Constan
7 94 ]
% , . __ d (9F\ 9F _
aI= fxl F(x,y,y' )dx stationary=> ™ ( ay’) P =0
If F does not have explicit dependence on x,i,e F = F(y,y')

oF
ay’

y' — F = Constant

Homogeneity in space Conservation of linear momentum

Isotropy of space Conservation of angular momentum

Homogeneity in time Conservation of energy




Application of variation principle: Shortest path betwee

two points on the surface of a sphere

(1 Shortest path is the path along the great
circle connecting the two points

O Elementary length (ds) between two
points in spherical polar coordinates

ds? = dr? + r?df? + r?sin®0 do*

L On the surface of the sphere,
r = R = constant
r=20
ds? = R?dB? + R*sin®0 do*




Shortest path between two points on the surface of a

sphere

4 Total length between two points 1&2 Mathematically difficult due

{0 non-zero OF
00

2 2
S = j ds = f JVR2d62 + RZsin26 dep? t
1 1 U You can also express as

7 o (do\ z do\’
S=Rj 1+ sin?6(——] do SZRJ sin20 + | —| do
61 \ do —> 01 de

I |
, _do

2
d i
F{6,9p(0),9'(0)} = \/1 + sin?6 (%) = \/1 + sin20¢'’ Y T 4o

[ Necessary condition for the integral (total time) to be extremum

d [ OF oF .
do\de') 0¢




Shortest path between two points on the surface of

OF oF sin“G¢’
F=\/1+Sin29<p’2 — =0 - =
A dop . 2
1+ sin?60 ¢’
d sin’0¢’ sin®0¢’
10 L = 0; & = constant = k

\/1 + sin26 @' \/1 + sin26 @'

A 12 19 . 2 2\ k csc?0
sin"0¢"" =k (1+sin"0 ¢ )’ ¢ = i\/1—kzcsc26?
k csc?6 k csc?6
+ =+
J1—k2(1 + cot?6) J1—k?—k?cot?6)

Q' =

+k csc?6

_V1—k2J1_ &
T— k2

!

¢

cot?6




Shortest path between two points on the surface of a

sphere
; csc?0 do . L
Q=a et @« =—=andq =
C\l/l — a?cot?6 ) o iz
— 49 . _ q a Co
dg J1-q2’ fdo=] 1-q2 dq = acsc?6 do

¢ =sin"'q + f; q = sin(p — B)
f — Integration constant
a cotf =sin(¢p —p) ... .....[1]

To understand the meaning of equation 1, multiply both sides by R

@ R cotf = R sin(p — )
aR cosO = R sinf sing cosff — R sinf cose sinf
az =cosfy—sinfi x Equation of a plane
sinf x—cosfy—az=20 > passing through origin

Equation of a plane passing through (x,, Vo, Zg)
a(x —x0) +b(y —yo) +c(z—20) =0



Shortest path between two points on the surface of a

sphere

sinf x—cosfy—az=0
This plane which passes through the origin slices through the sphere in
great circles

Thus solution of Euler-Lagrange’s equation are great circle routes

Shortest path between two points on the surface of a sphere must
lie on this the great circle passing through those points.



Questions?




