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 Action integral 

A mechanical system will evolve in time in such that action integral 

is stationary → Hamilton’s Principle of Least Action
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Stationary

Stationary condition of Action integral  
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$��
= 0 Lagrange’s equation from Variational 

principle



symmetries and conservation laws  



Cyclic coordinates, symmetries and 

conservation laws  
Cyclic coordinate (��) Corresponding generalized (canonical) 

momentum ('� = ()
(*� +) conserved 

� is independent of the particular 

cyclic coordinate (��).

��  → �� + -��  has no effect on �.
System is symmetric under translation 

in generalized coordinate ��
 Symmetry in generalized  coordinate gives rise to a conserved canonical 

momentum. 

Example: For planetary motion

� = 1
2 1 2� 3 + 234� 3 + 561

2� is independent of rotation angle 4(cyclic coordinate), the system has rotational symmetry 

[symmetric under translation in 4 → 4 + -4) , the system remains the same after change in 4.

As 4 is cyclic, corresponding generalized (canonical) momentum '7 = 1234�=Constant; 

which is nothing but angular momentum.

Conclusion: Conservation of angular momentum is related to rotational 

symmetry of the system.



Translational symmetry and homogeneity of space  

 Homogeneity of space: Space is such that in a particular direction, all 

the points are equivalent.  

X

Y

Z

8� 89

Homogeneous in X-direction→Potential at 

every point along the line

� :, ;, < = �(:=, ;, <)

Homogeneous along X-direction→ � is invariant under 

translation along X-direction→ '> conserved 

Homogeneous along Y-direction→ � is invariant under 

translation along Y-direction→ '? conserved.

Homogeneous along Z-direction→ � is invariant under 

translation along Z-direction→ '@ conserved 



Rotational symmetry and isotropy of space

 Isotropy of space: Different directions around a point are all 

equivalent (at the same distance from that point). 

All the directions are equivalent

Potential energy in different directions (at the same distance from a 

particular point) must be same, as all directions are equivalent. 

 Thus L 2 , AB#C'CB#CB� DE 4, F and �. , � is invariant under rotation.

 'G and '7 and '� are conserved.   

Isotropy of space≡ Rotational symmetry of 

the system in both 4, F and �

Thus→
� 2, 4, F,� = �(2, 4=, F=,�), function of 2
only.



Symmetry and conservation laws

Conservation of linear momentumHomogeneity of space 
(Translational symmetry)

Conservation of angular momentumIsotropy of space 
(Rotational symmetry)

 If � does not explicitly depend on time, then energy of the system is 

conserved, provided potential energy is velocity independent.  

Conservation of energy
Homogeneity in time

(“translation” in time)  

Homogeneity in time? 

� �� , ��� , � = � �� , ��� , �=
Only possible if � does not have 

explicit time dependence 



Homogeneity in time leads to energy conservation: 

Proof
 � = �(�I, … �K, ��I, … . ��K, �)

Using the chain rule of partial differentiation
#�
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Using Lagrange’s 

eqn.
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#
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$��� ���
N

�
− � + $�

$� = 0

 If � does not have explicit time dependence

A, C $�
$� = 0 L $�

$��� ���
N

�
− � = ODBP�QB�
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L $�
$��� ���

N

�
= 2R

 If S does not depend on generalized velocity, 
(T
(*� + = 0; 

()
(*� + = (U

(*� + as � = R − S

 If � does not explicitly depend on time (
()
(V = 0) and V is velocity independent, 

∑ (U
(*� + ���N� − � = ODBP�QB�

 For a single free particle R = I
3 1 :� 3 + ;� 3 + <�3

L $R
$��� ���

N

�
= 1 :�:� + ;�;� + <�<� = 2R

 The relationship is true for General case as well, 

Euler’s theorem: If E(:X) is a homogeneous function of the BVY degree of set 

of variables :X, then ∑ Z�
Z8� � 8� �N� = ��.

 Kinetic energy R is a function of  2nd degree of generalized 

velocities ���



2R − � = cDBP�QB� 
 2R − R + S = cDBP�QB� 

R + S = cDBP�QB�
Conclusion, R + S = d = cDBP�QB� , 
AE � #DCP BD� C:'eAcA�Ce; #C'CB# DB �A1C 
 QB# 'D�CB�AQe AP fCeDcA�; AB#C'#CB�

L $R
$��� ���

N

�
− � = ODBP�QB�

Proof continue…

L $R
$��� ���

N

�
= 2RNow, 

� does not depend not explicitly depend on time→Change in time does 

not cause any change in the form of � →Homogeneity in time   

 Total energy conserved if 



Summary

 Principle of least action:  Action I= g � ��, �� �, � ����
�� is stationary

#
#�

$�
$��� − $�

$��
= 0

 If L does not have explicit time dependence, i,e � = � �I, … �K, ��I, … . ��K
L $�

$��� ���
N

�
− � = ODBP�QB�

 I =  g i :, ;, ;= #:>j
>k stationary=>  

�
�8

Zl
Zm= − Zl

Zm =0

If F does not have explicit dependence on :, i,e i = i ;, ;= 
$i
$;= ;= − i = ODBP�QB�

Conservation of linear momentumHomogeneity in space 

Conservation of angular momentumIsotropy of space

Conservation of energyHomogeneity  in time  



Application of variation principle: Shortest path between 

two points on the surface of a sphere  

 Shortest path is the path along the great 

circle connecting the two points 

��

 Elementary length (#P) between two 

points in spherical polar coordinates

#P3 = #23 + 23#43 + 23PAB34 #F3

 On the surface of the sphere, 

2 = n = cDBP�QB�
2� = 0

#P3 = n3#43 + n3PAB34 #F3



Shortest path between two points on the surface of a 

sphere  

 Total length between two points 1&2

p = � #P
3

I
= � n3#43 + n3PAB34 #F3N3

I

p = n � 1 + PAB34 #F
#4

3N7j

7k
#4

 You can also express as

p = n � PAB34 + #4
#F

3NGj

Gk
#F

i 4, F 4 , F=(4) = 1 + PAB34 #F
#4

3N = 1 + PAB34F=3N F= = #F
#4

 Necessary condition for the integral (total time) to be extremum 
�

�q
Zl
Zr= − Zl

Zr  =0

Mathematically difficult due 

to non-zero 
(s
(7



Shortest path between two points on the surface of a 

sphere  

Zl
Zr = "i = 1 + PAB34 F=3N Zl

Zr= = PAB34r=

1 + PAB34 F=3N

#
#4

PAB34r=

1 + PAB34 F=3N
= ";  PAB34r=

1 + PAB34 F=3N
= �
���
�� = u

PABv4F=3 = w3 1 + PAB34 F=3
;  F= = ± y z{zj7

I|yjz{zj7N

F= = ± w cPc34
1 − w3(1 + cD�34)N = ± w cPc34

1 − w3 − w3cD�34)N

F= = ±w
1 − w3N

cPc34
1 − w3

1 − w3 cD�34N



Shortest path between two points on the surface of a 

sphere  

Let   } = ±y
I|yjN and � =

} cot 4
#� = α cPc34 #4

#F = } cPc34 #4
1 − }3cD�34N

#F = �*
I|*jN ; g #FN

N = g �*
I|*jN

N
N

F = sin|I � + �; � = sin(F − �)
� �
�q = ���(r − �) … … . . [�] � → �B�C�2Q�ADB cDBP�QB�

To understand the meaning of  ���
��
� �, multiply both sides by n
} n cD�4 = n sin F − �

}n cDP4 = n PAB4 PABF cDP� − n PAB4 cDPF PAB�
}< = cDP� ; − sin �  :

��� �  8 − �
�� m − �� = " Equation of a plane 

passing through origin

Equation of a plane passing through :�, ;�, <�Q : − :� + � ; − ;� + c < − <� = 0



Shortest path between two points on the surface of a 

sphere  

PAB �  : − cDP� ; − }< = 0
This plane which passes through the origin slices through the sphere in 

great circles 

Thus solution of Euler-Lagrange’s equation are great circle routes  

Shortest path between two points on the surface of a sphere must 

lie on this the great circle passing through those points.   



Questions?


