

Lecture 9

Review of Lagrange's equations from D'Alembert's Principle, Examples of Generalized Forces a way to deal with friction, and other non-conservative forces

D'Alembert's principle of virtual work

If virtual work done by the constraint forces is ($f_c \cdot \delta \vec{r} = 0$) (from eq.-1),

$$
\left(\vec{F}_e - m\ddot{\vec{r}}\right) \cdot \delta \vec{r} = 0 \longrightarrow D' \text{Alembert's principle of Virtual work}
$$

Now, for a general system of N particles having virtual displacements, $\delta \vec{r}_1$, $\delta \vec{r}_2$,...., $\delta \vec{r}_N$,

$$
\sum_{i=1}^{N} (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0
$$

 $\vec{i}_i \cdot \delta \vec{r}_i = 0$ $\vec{F}_{ie} \rightarrow$ Applied force on i_{th} particle

Does not necessarily means that individual terms of the summation are zero as \vec{r}_i are not independent, they are connected by constrain relation

D'Alembert's principle,

Constraint forces are out of the game!

Now, no need of additional subscript, we shall simply write $\overrightarrow{F}_{\boldsymbol{i}}\,$ instead of $\, \vec{F}_{\boldsymbol{i} \boldsymbol{e}} \,$

But How to express this relation so that individual terms in the summation are zero?

Switch to generalized coordinate system as they are independent!

Let's take the 1st term

 $\pmb Q$

 $Q_j = \sum \vec{F}_l$

i

i · $\frac{\partial \vec{r}_i}{\partial q_j}$

$$
\sum_i \vec{F}_i \cdot \delta \vec{r}_i = \sum_i \vec{F}_i \cdot \sum_{j=1}^n \frac{\partial \vec{r}_i}{\partial q_j} \delta q_j = \sum_{j=1}^n \left(\sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j} \right) \delta q_j = \sum_{j=1}^n Q_j \delta q_j
$$

Generalized force

Q Dimensions of Q_j is not always of force! \Box Dimensions of $Q_j \delta q_j$ is always of work!

00

$$
\begin{aligned}\n\Box \quad & 2^{\text{nd}} \text{Term:} \quad \left| \sum_{i} m_{i} \ddot{\vec{r}}_{i} \cdot \delta \vec{r}_{i} = \sum_{i} m_{i} \ddot{\vec{r}}_{i} \cdot \sum_{j=1}^{n} \frac{\partial \vec{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{i,j} m_{i} \ddot{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} \delta q_{j} \right| \\
& \overrightarrow{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} = \frac{d}{dt} \left(\dot{\vec{r}}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} \right) - \dot{\vec{r}}_{i} \cdot \frac{d}{dt} \left(\frac{\partial \vec{r}_{i}}{\partial q_{j}} \right) \\
& = \frac{d}{dt} \left(\dot{\vec{r}}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}} \right) - \dot{\vec{r}}_{i} \cdot \left(\frac{\partial \dot{\vec{r}}_{i}}{\partial q_{j}} \right) \\
& = \frac{d}{dt} \left(\dot{\vec{r}}_{i} \cdot \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{j}} \right) - \dot{\vec{r}}_{i} \cdot \left(\frac{\partial \dot{\vec{r}}_{i}}{\partial q_{j}} \right) \\
& = \frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_{j}} \left(\frac{1}{2} \dot{\vec{r}}_{i}^{2} \right) \right) - \frac{\partial}{\partial q_{j}} \left(\frac{1}{2} \dot{\vec{r}}_{i}^{2} \right) \\
& \text{dot cancellation!} \\
\end{aligned}
$$
\nNot cancellation!

 \Box Thus 2^{nd} term becomes

$$
\sum_{i=1}^{N} m_i \ddot{\vec{r}}_i \cdot \delta \vec{r}_i = \sum_{i,j} m_i \left[\frac{d}{dt} \left\{ \frac{d}{d\dot{q}_j} \left(\frac{1}{2} \dot{r}_i^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\frac{1}{2} \dot{r}_i^2 \right) \right\} \delta q_j
$$
\n
$$
= \sum_{j} \left[\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} \left(\sum_{i} \frac{1}{2} m_i \dot{r}_i^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\sum_{i} \frac{1}{2} m_i \dot{r}_i^2 \right) \right] \delta q_j
$$
\n
$$
= \sum_{j} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_j} \right\} \delta q_j
$$

The 1st term

$$
\sum_{i} \vec{F}_i \cdot \delta \vec{r}_i = \sum_{j=1}^{n} Q_j \delta q_j
$$

D'Alembert's principle in generalized coordinates becomes

$$
\sum_{j} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} \delta q_{j} = \sum_{j} Q_{j} \delta q_{j}
$$

$$
\sum_{j} \left[\left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} - Q_{j} \right] \delta q_{j} = 0
$$

Well, we are very close to Lagrange's equation!

 \Box Since generalized coordinates q_j are all independent each team in the argumention is zero.

term in the summation is zero \boldsymbol{d} \overline{dt} ∂T $\overline{\partial}\dot q_{\overline{j}}$ $-\frac{\partial T}{\partial q_j}$ $= Q$ \int **□** If all the forces are conservative, then $\vec{F}_i = -\vec{\nabla}V_i$ $\pmb Q$ $Q_j = \sum$ $\sum_i (-\nabla V_i$ · $\sum_i \left(-\vec{\nabla}V_i\right) \cdot \frac{\partial \vec{r}_i}{\partial q_j}$ = $\delta-\sum_i \frac{\partial V_i}{\partial q_j}$ = [−] ∂ $\frac{\partial}{\partial q_j} \sum_i V_i$ = [−] ∂V $\overline{\partial q_j}$ Total potential $V = \sum V_i$ i − $-\bigg(\frac{\partial V_i}{\partial x_i}\hat{\imath} +$ $\frac{\partial V_i}{\partial y_i}\hat{j}$ + $\frac{\partial V_i}{\partial z_i}$ \widehat{k}). $\cdot \left(\frac{\partial x_i}{\partial q_j} \hat{\imath} + \frac{\partial y_i}{\partial q_j} \hat{\jmath} + \right.$ $\frac{\partial z_i}{\partial q_j}$ \hat{k} = [−] $\frac{\partial V_i}{\partial x_i}$ $\frac{\partial x_i}{\partial q_j}$ $\, +$ $\frac{\partial V_i}{\partial y_i}$ $\frac{\partial y_i}{\partial q_j}$ + $\frac{\partial V_i}{\partial z_i}$ $\frac{\partial z_i}{\partial q_j}$

Hence,
\n
$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j = -\frac{\partial V}{\partial q_j}
$$

 \Box Assume that *V* does not depend on \dot{q}_j , then $\boldsymbol{\partial V}$ $\frac{\partial}{\partial \dot{q}_j} = 0$

$$
\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} (T - V) \right\} - \frac{\partial (T - V)}{\partial q_j} = 0
$$

$$
\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right)-\frac{\partial L}{\partial q_j}=0
$$

Where, $L(q_j, \dot{q}_j, t) = T(q_j, \dot{q}_j, t) - V(q_j, t)$

We have reached to Lagrange's equation from D'Alembert's principle.

Review of the steps we followed

 \Box Started from Newton's law

$$
m\ddot{\vec{r}} = \vec{F}_e + \vec{f}_c
$$

 $m\ddot{\vec{r}} = \vec{F}_e + \vec{f}_c$
 \Box Taken dot product with virtual displacement to kick out constrain force from the game by using $\vec{f}_c \cdot \delta \vec{r} = 0$; Arrive at D'Alembert's principle $(\vec{F}_e - m\vec{r})$. . $\left(\mathbf{\hat{\delta} \vec{r}}\right)\cdot \mathbf{\delta \vec{r}}=0$

 \Box Extended D'Alembert's principle for a system of particles;

$$
\sum_{i=1}^N (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0
$$

 Converted this expression in generalized coordinate system that *"every"* term of this summation is zero to get

$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_j} = Q_j
$$

This is a more general expression!

■ Now, with the assumptions: i) Forces are conservative, $\vec{F}_i = -\vec{\nabla}V_i$, hence $Q_j = -$ We get back our Lagrange's eqn., $\frac{d}{d}$ ∂V ∂q and ii) potential does not depend on $\dot{\mathbf{q}}_j$, then $\frac{\partial V}{\partial \dot{q}_j} = 0$ \overline{dt} $\boldsymbol{\partial L}$ $\overline{\partial\dot{\boldsymbol{q}}_{j}}$ − $-\frac{\partial L}{\partial q_j}$ =0

Discussion on generalized force

 \Box A system may experience both conservative, non-conservative forces i ,e. $F_i = F_i$ С $+F_i$ nc

 \Box Hence generalized force for the system

$$
Q_j = \sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_j} = \sum_i (\vec{F}_i^c + \vec{F}_i^{nc}) \cdot \frac{\partial \vec{r}_i}{\partial q_j} = \sum_i \vec{F}_i^c \cdot \frac{\partial \vec{r}_i}{\partial q_j} + \sum_i \vec{F}_i^{nc} \cdot \frac{\partial \vec{r}_i}{\partial q_j}
$$

$$
Q_j = Q_j^c + Q_j^{nc}
$$

$$
Q_j^c = \sum_i \vec{F}_i^c \cdot \frac{\partial \vec{r}_i}{\partial q_j} \longrightarrow^{\mathfrak{l}}
$$

Generalized force corresponding to

conservative part conservative part

$$
Q_j^{nc} = \sum_i \vec{F}_i^{nc} \cdot \frac{\partial \vec{r}_i}{\partial q_j}
$$

 \Box Generalized force corresponding to non-conservative part

Lagrange's equation with both conservative and nonconservative force

If system may experience both conservative, non-conservative forces

$$
\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_j} = Q_j^c + Q_j^{nc}
$$

Generalized force corresponding to conservative force can be derived from potential $Q_j{}^c = -\frac{\partial V}{\partial q_j}$

$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_j} = -\frac{\partial V}{\partial q_j} + Q_j^{nc}
$$
\n
$$
\frac{d}{dt} \left(\frac{\partial}{\partial \dot{q}_j} (T - V) \right) - \frac{\partial (T - V)}{\partial q_j} = Q_j^{nc}
$$
\n
$$
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_j} = Q_j^{nc}
$$
\n
$$
L = T - V
$$

More on Lagrange's equations

Example-5

Example 5: A mass *M* slides down a frictionless plane inclined at angle α . A pendulum, with length l , and mass m , is attached to M . Find the equations of motion. For small oscillation

Example-5

Four constrains equations $z_1 = 0; z_2 = 0$ $y_2 = x_2 \tan \alpha$ $(y_2 - y_1)^2 + (x_2 - x_1)^2 = l^2$

Step-1: *Find the degrees of freedom and choose suitable generalized coordinates*

Two particles $N = 2$, no. of constrains $(k) = 4$ thus degrees of freedom = $3 \times 2 - 4 = 2$ Hence number of generalized coordinates must be two.

's' and θ ' can serve as generalized coordinates (they are independent nature)

Example-5 continued ….

Step-2: *Find out transformation relations*

 $x_2 = s \cos \alpha; y_2 = s \sin \alpha$ $x_1 = s \cos \alpha + l \sin \theta$; $y_1 = s \sin \alpha + l \cos \theta$

All the constrains relations have beenthe included in problem throughthese relationship

Step-3: *Write T and V in Cartesian*

$$
T = \frac{1}{2}m(\dot{x}_1^2 + \dot{y}_1^2) + \frac{1}{2}M(\dot{x}_2^2 + \dot{y}_2^2)
$$

V = -mgy₁ - Mgy₂

From transformation equation

Step-4:Convert T and V in generalized coordinate using transformation

$$
T = \frac{1}{2}m[s^2 + l^2\dot{\theta}^2 + 2l\dot{s}\dot{\theta}\cos(\alpha + \theta)] + \frac{1}{2}M\dot{s}^2
$$

V = $-mg(s\sin\alpha + l\cos\theta) - Mgs\sin\alpha$

$$
\begin{aligned}\n\dot{x}_2 &= \dot{s} \cos \alpha \, ; \, \dot{y}_2 = \dot{s} \sin \alpha \\
\dot{x}_1 &= \dot{s} \cos \alpha + l \cos \theta \, \dot{\theta}; \\
\dot{y}_1 &= \dot{s} \sin \alpha - l \sin \theta \, \dot{\theta}\n\end{aligned}
$$

Example-5 continued ….

Step-5: *Write down Lagrangian* $L = T - V$ $L =$ 1 2 $\frac{1}{2}m[s^2 + l^2]$ $\left[2\dot{\theta}^2 + 2l\dot{s}\dot{\theta}\cos(\alpha + \theta)\right]$ + $+mg(s \sin \alpha + l \cos \theta) + Mgs \sin \alpha$ 1 2 $\frac{1}{2}M\dot{s}^2$

$$
\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}} \right) - \frac{\partial L}{\partial s} = 0 \text{ and } \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0
$$

From 1st eqn

$$
\frac{d}{dt} [m\dot{s} + ml\dot{\theta} \cos(\alpha + \theta) + M\dot{s}] - mg \sin \alpha - Mg \sin \alpha = 0
$$

$$
(m + M)\ddot{s} + ml\ddot{\theta} \cos(\alpha + \theta) + ml\dot{\theta}^2 \sin(\alpha + \theta) - (m + M)g \sin \alpha = 0
$$

From 2nd eqn
\n
$$
\frac{d}{dt}[ml^2\dot{\theta} + ml\dot{s}\cos(\alpha + \theta)] + ml\dot{s}\dot{\theta}\sin(\alpha + \theta) + mgl\sin\theta = 0
$$
\n
$$
ml^2\ddot{\theta} + ml\ddot{s}\cos(\alpha + \theta) + mgl\sin\theta = 0
$$

Problems with generalized force

Example-6

Example-7; Ring & mass on horizontal plane

Example-8; Wedge & Block under friction, *f*

Generalized coordinate (X, s)

QUESTIONS PLEASE