

Lecture 9

Review of Lagrange's equations from D'Alembert's Principle, Examples of Generalized Forces a way to deal with friction, and other non-conservative forces

D'Alembert's principle of virtual work

If virtual work done by the constraint forces is $(\vec{f}_c \cdot \delta \vec{r} = 0)$ (from eq.-1),

$$\left(\vec{F}_{e} - m\vec{\vec{r}}\right) \cdot \delta\vec{r} = 0 \longrightarrow$$
 D'Alembert's principle of Virtual work

Now, for a general system of N particles having virtual displacements, $\delta \vec{r_1}, \delta \vec{r_2}, \dots, \delta \vec{r_N}$,

$$\sum_{i=1}^{N} (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0$$

 $\vec{F}_{ie} \rightarrow \text{Applied force on } i_{th} \text{ particle}$

Does not necessarily means that individual terms of the summation are zero as \vec{r}_i are not independent, they are connected by constrain relation

D'Alembert's principle,

Constraint forces are out of the game!

Now, no need of additional subscript, we shall simply write \vec{F}_i instead of \vec{F}_{ie}

But How to express this relation so that individual terms in the summation are zero?

60

Switch to generalized coordinate system as they are independent!

Let's take the 1st term

 $Q_j = \sum_i \vec{F}_i \cdot \frac{\partial \vec{r}_i}{\partial q_i}$

$$\sum_{i} \vec{F}_{i} \cdot \delta \vec{r}_{i} = \sum_{i} \vec{F}_{i} \cdot \sum_{j=1}^{n} \frac{\partial \vec{r}_{i}}{\partial q_{j}} \delta q_{j} = \sum_{j=1}^{n} \left(\sum_{i} \vec{F}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} \right) \delta q_{j} = \sum_{j=1}^{n} Q_{j} \delta q_{j}$$

→ Generalized force

Dimensions of Q_j is not always of force!
 Dimensions of Q_jδq_j is always of work!

 \Box Thus 2nd term becomes

$$\sum_{i=1}^{N} m_i \ddot{\vec{r}}_i \cdot \delta \vec{r}_i = \sum_{i,j} m_i \left[\frac{d}{dt} \left\{ \frac{d}{d\dot{q}_j} \left(\frac{1}{2} \dot{\vec{r}_i}^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\frac{1}{2} \dot{\vec{r}_i}^2 \right) \right] \delta q_j$$
$$= \sum_j \left[\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} \left(\sum_i \frac{1}{2} m_i \dot{\vec{r}_i}^2 \right) \right\} - \frac{\partial}{\partial q_j} \left(\sum_i \frac{1}{2} m_i \dot{\vec{r}_i}^2 \right) \right] \delta q_j$$
$$= \sum_j \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_j} \right\} \delta q_j$$

The 1st term

$$\sum_{i} \vec{F}_{i} \cdot \delta \vec{r}_{i} = \sum_{j=1}^{n} Q_{j} \delta q_{j}$$

D'Alembert's principle in generalized coordinates becomes

$$\sum_{j} \left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} \delta q_{j} = \sum_{j} Q_{j} \delta q_{j}$$
$$\sum_{j} \left[\left\{ \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} \right\} - Q_{j} \right] \delta q_{j} = 0$$

Well, we are very close to Lagrange's equation!

 \Box Since generalized coordinates q_j are all independent each

term in the summation is zero $\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j$ $= -\left(\frac{\partial V_i}{\partial x_i} \hat{\imath} + \frac{\partial V_i}{\partial y_i} \hat{\jmath} + \frac{\partial V_i}{\partial z_i} \hat{k} \right) \cdot \left(\frac{\partial x_i}{\partial q_j} \hat{\imath} + \frac{\partial y_i}{\partial q_j} \hat{\jmath} + \frac{\partial z_i}{\partial q_j} \hat{k} \right)$ $= -\left(\frac{\partial V_i}{\partial x_i} \frac{\partial x_i}{\partial q_j} + \frac{\partial V_i}{\partial y_i} \frac{\partial y_i}{\partial q_j} + \frac{\partial V_i}{\partial z_i} \frac{\partial z_i}{\partial q_j} \right)$ $\square \text{ If all the forces are conservative, then } \vec{F_i} = -\vec{\nabla}V_i$ $Q_j = \sum_i (-\vec{\nabla}V_i) \cdot \frac{\partial \vec{r}_i}{\partial q_j} = -\sum_i \frac{\partial V_i}{\partial q_j} = -\frac{\partial}{\partial q_j} \sum_i V_i = -\frac{\partial V}{\partial q_j}$ Total potential $V = \sum_i V_i$

Hence,

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_j} \right) - \frac{\partial T}{\partial q_j} = Q_j = -\frac{\partial V}{\partial q_j}$$

 \Box Assume that *V* does not depend on \dot{q}_j , then $\frac{\partial V}{\partial \dot{q}_j} = 0$

$$\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} (T - V) \right\} - \frac{\partial (T - V)}{\partial q_j} = 0$$

$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0$$

Where, $L(q_j, \dot{q}_j, t) = T(q_j, \dot{q}_j, t) - V(q_j, t)$

We have reached to Lagrange's equation from D'Alembert's principle.

Review of the steps we followed

☐ Started from Newton's law

$$m\ddot{\vec{r}} = \vec{F}_e + \vec{f}_c$$

□ Taken dot product with virtual displacement to kick out constrain force from the game by using $\vec{f_c} \cdot \delta \vec{r} = 0$; Arrive at D'Alembert's principle $(\vec{F_e} - m\vec{r} \cdot \delta \vec{r}) \cdot \delta \vec{r} = 0$

Extended D'Alembert's principle for a system of particles;

$$\sum_{i=1}^{N} (\vec{F}_{ie} - m_i \ddot{\vec{r}}_i) \cdot \delta \vec{r}_i = 0$$

□ Converted this expression in generalized coordinate system that *"every"* term of this summation is zero to get

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_j} = Q_j$$

This is a more general expression!

□ Now, with the assumptions: i) Forces are conservative, $\vec{F}_i = -\vec{\nabla}V_i$, hence $Q_j = -\frac{\partial V}{\partial q_j}$ and ii) potential does not depend on \dot{q}_j , then $\frac{\partial V}{\partial \dot{q}_j} = 0$ We get back our Lagrange's eqn., $\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0$

Discussion on generalized force

□ A system may experience both conservative, non-conservative forces i,e. $\vec{F}_i = \vec{F}_i^{\ c} + \vec{F}_i^{\ nc}$

□ Hence generalized force for the system

$$Q_{j} = \sum_{i} \vec{F}_{i} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} = \sum_{i} \left(\vec{F}_{i}^{\ c} + \vec{F}_{i}^{\ nc} \right) \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} = \sum_{i} \vec{F}_{i}^{\ c} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}} + \sum_{i} \vec{F}_{i}^{\ nc} \cdot \frac{\partial \vec{r}_{i}}{\partial q_{j}}$$
$$Q_{j} = Q_{j}^{\ c} + Q_{j}^{\ nc}$$

$$Q_j^{\ c} = \sum_i \vec{F_i}^{\ c} \cdot \frac{\partial \vec{r_i}}{\partial q_j} \blacksquare$$

Generalized force corresponding to conservative part

$$Q_j^{nc} = \sum_i \vec{F_i}^{nc} \cdot \frac{\partial \vec{r_i}}{\partial q_j}$$

Generalized force corresponding to non-conservative part

Lagrange's equation with both conservative and nonconservative force

□ If system may experience both conservative, non-conservative forces

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_i}\right) - \frac{\partial T}{\partial q_j} = Q_j^{\ c} + Q_j^{\ nc}$$

Generalized force corresponding to conservative force can be derived from potential $Q_j^c = -\frac{\partial V}{\partial q_j}$

$$\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_i} \right) - \frac{\partial T}{\partial q_j} = -\frac{\partial V}{\partial q_j} + Q_j^{nc}$$

$$\frac{d}{dt} \left\{ \frac{\partial}{\partial \dot{q}_j} (T - V) \right\} - \frac{\partial (T - V)}{\partial q_j} = Q_j^{nc} \quad \Box \text{ Assume that } V \text{ does not} \text{ depend on } \dot{q}_j, \text{ then } \frac{\partial V}{\partial \dot{q}_j} = \mathbf{0}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_j} = Q_j^{nc} \quad L = T - V$$

More on Lagrange's equations

Example-5

Example 5: A mass M slides down a frictionless plane inclined at angle α . A pendulum, with length l, and mass m, is attached to M. Find the equations of motion. For small oscillation

Example-5

Four constrains equations $z_1 = 0; z_2 = 0$ $y_2 = x_2 \tan \alpha$ $(y_2 - y_1)^2 + (x_2 - x_1)^2 = l^2$

Step-1: *Find the degrees of freedom and choose suitable generalized coordinates*

Two particles N = 2, no. of constrains (k) = 4thus degrees of freedom = $3 \times 2 - 4 = 2$ Hence number of generalized coordinates must be two.

's' and ' θ ' can serve as generalized coordinates (they are independent nature)

Example-5 continued

Step-2: *Find out transformation relations*

 $x_{2} = s \cos \alpha; y_{2} = s \sin \alpha$ $x_{1} = s \cos \alpha + l \sin \theta; y_{1} = s \sin \alpha + l \cos \theta$ All the constrains relations have been included in the problem through these relationship

Step-3: Write T and V in Cartesian

$$T = \frac{1}{2}m(\dot{x}_1^2 + \dot{y}_1^2) + \frac{1}{2}M(\dot{x}_2^2 + \dot{y}_2^2)$$

V = -mgy_1 - Mgy_2

From transformation equation

Step-4:Convert *T* and *V* in generalized coordinate using transformation

$$T = \frac{1}{2}m[\dot{s}^2 + l^2\dot{\theta}^2 + 2l\dot{s}\dot{\theta}\cos(\alpha + \theta)] + \frac{1}{2}M\dot{s}^2$$
$$V = -mg(s\sin\alpha + l\cos\theta) - Mgs\sin\alpha$$

$$\dot{x}_{2} = \dot{s} \, \cos \alpha \, ; \, \dot{y}_{2} = \dot{s} \sin \alpha$$
$$\dot{x}_{1} = \dot{s} \, \cos \alpha + l \cos \theta \, \dot{\theta} ;$$
$$\dot{y}_{1} = \dot{s} \sin \alpha - l \sin \theta \, \dot{\theta}$$

Example-5 continued

Step-5: Write down Lagrangian

$$L = T - V$$

$$L = \frac{1}{2}m[\dot{s}^{2} + l^{2}\dot{\theta}^{2} + 2l\dot{s}\dot{\theta}\cos(\alpha + \theta)] + \frac{1}{2}M\dot{s}^{2}$$

$$+mg(s\sin\alpha + l\cos\theta) + Mgs\,\sin\alpha$$

Step-5: Write down Lagrange's equation for each generalized coordinates

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{s}} \right) - \frac{\partial L}{\partial s} = 0 \text{ and } \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) - \frac{\partial L}{\partial \theta} = 0$$

From 1st eqn
$$\frac{d}{dt} [m\dot{s} + ml\dot{\theta}\cos(\alpha + \theta) + M\dot{s}] - mg\sin\alpha - Mg\sin\alpha = 0$$
$$(m + M)\ddot{s} + ml\ddot{\theta}\cos(\alpha + \theta) + ml\dot{\theta}^{2}\sin(\alpha + \theta) - (m + M)g\sin\alpha = 0$$

From 2nd eqn

$$\frac{d}{dt}[ml^2\dot{\theta} + ml\dot{s}\cos(\alpha + \theta)] + ml\dot{s}\dot{\theta}\sin(\alpha + \theta) + mgl\sin\theta = 0$$

$$ml^2\ddot{\theta} + ml\ddot{s}\cos(\alpha + \theta) + mgl\sin\theta = 0$$

Problems with generalized force

Example-6

Example-7; Ring & mass on horizontal plane

Example-8; Wedge & Block under friction, *f*

Generalized coordinate (X, s)

QUESTIONS PLEASE