
PH101

Lecture 9  

Review of  Lagrange’s equations from D’Alembert’s Principle, 

Examples of Generalized Forces a way to deal with friction, 

and other non-conservative forces  



If virtual work done by the constraint forces is (  ��· �� = �) (from eq.-1), 

	
 − ��
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D’Alembert’s principle of virtual work

D’Alembert’s principle of Virtual work

Now, for a general system of � particles having virtual 

displacements, ����, ����,….., ����,
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 →Applied force on �� particle

Does not necessarily means that individual terms of the summation are zero as 

�� are not independent, they are connected by constrain relation 



Lagrange’s equation from D’Alembert’s principle 

 D’Alembert’s principle,
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Switch to generalized coordinate system as they are independent!
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Let’s take the 1st term

Constraint forces are out of the game! 

Now, no need of additional subscript, we 

shall simply write 	�  instead of  !�"2
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Generalized force 

 Dimensions of (& is not always of force!

 Dimensions of (&�%& is always of work!

But How to express this relation so that individual terms 

in the summation are zero? 
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Lagrange’s equation from D’Alembert’s principle 

 2nd Term:
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 Bit of rearrangement in derivatives 

dot cancellation!
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can be interchanged!
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Lagrange’s equation from D’Alembert’s principle 

 Thus 2nd term becomes
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The 1st term



Lagrange’s equation from D’Alembert’s principle 
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 D’Alembert’s principle in generalized coordinates becomes

 Since generalized coordinates %& are all independent each 

term in the summation is zero  
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 If all the forces are conservative, then  !�" = −EF"
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Well, we are very close 

to Lagrange’s equation!
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Lagrange’s equation from D’Alembert’s principle 

Hence,
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Where, 
S(56, 59 6, @) = T(56, 59 6, @) − U(56, @)
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We have reached to Lagrange’s equation from D’Alembert’s 

principle.

 Assume that  U does not depend on 59 6, then 
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Review of the steps we followed  

 Started from Newton’s law 

3��
 = !�2 + V�W
 Taken dot product with virtual displacement to kick out constrain force from the game 

by using   V�W· ��� = 0 ; Arrive at D’Alembert’s principle 	
 − ��
 · �� · �� = �

 Extended D’Alembert’s principle for a system of particles; 
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 Converted this expression in generalized coordinate system that “every” term of 

this summation is zero to get

 Now, with the assumptions: i) Forces are conservative, !�" = −EF" , hence  

(& = − :X
:=>

and ii) potential does not depend on 59 6, then 
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We get back our Lagrange’s eqn.,

This is a more general expression!7
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Discussion on generalized force

 A system may experience both conservative, non-conservative forces 

i,e. 	� = 	�
� + 	�

Y�

 Hence generalized force for the system 
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 Generalized force corresponding to 

conservative part 

 Generalized force corresponding to 

non-conservative part 
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 Generalized force corresponding to conservative force can be derived 

from potential (&W = − :X
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 Assume that  U does not 

depend on 59 6, then 
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Z = C − F

Lagrange’s equation with both conservative and non-

conservative force

 If system may experience both conservative, non-conservative forces            



More on Lagrange’s equations 



Example-5

Example 5: A mass [ slides down a frictionless plane inclined at angle \. 

A pendulum, with length ], and mass 3, is attached to [. Find the 

equations of motion. For small oscillation  

]

3

[

\



Example-5

Step-1: Find the degrees of freedom and choose suitable 

generalized coordinates 

Two particles � = 2,  ^_. _V `_^a8�b�^a N = 4 
8dea 7fg�ffa _V V�ff7_3 = 3 i 2 − 4 = 2

Hence number of generalized coordinates must be two. 

‘a’ and  ‘j’ can serve as generalized coordinates (they are 

independent nature)

Four constrains equations 

M� = 0; M� = 0
K� = G� tan \

(K� − K�)�+(G� − G�)�= ]�

[

\

j

X

Y

a

(G�, K�)

(G�, K�)



Example-5 continued ….

Step-2: Find out transformation relations

G� = a cos \; K� = a sin \
G� = a cos \ + ] sin j ; K� = a sin \ + ] cos j

Step-3: Write C b^7 F in Cartesian

C = 1
2 3 G9�� + K9�� + 1

2 [ G9�� + K9��

V= −3gK� − [gK�

All the constrains

relations have been

included in the

problem through

these relationship

Step-4:Convert 

C b^7 F �^ gf^f�b]�Mf7 `__�7�^b8f ea�^g 8�b^aV_�3b8�_^

C = 1
2 3[a9� + ]�j9 � + 2]a9j9 cos(\ + j)]  + 1

2 [a9�
V= −3g(a sin \ + ] cos j) − [ga sin \

G9� = a9  cos \ ; K9� = a9 sin \
G9� = a9  cos \ + ] cos j j9 ;
 K9� = a9 sin \ − ] sin j j9

From 

transformation 

equation



Example-5 continued ….

Step-5: Write down  Lagrangian 

Z = C − F
Z = 1

2 3[a9� + ]�j9 � + 2]a9j9 cos(\ + j)]  + 1
2 [a9�

+3g(a sin \ + ] cos j) + [ga sin \

Step-5: Write down Lagrange’s equation for each generalized coordinates  
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From 1st eqn

7
78 [3a9 + 3]j9 cos \ + j + [a9] − 3g sin \ − [g sin \ = 0

3 + [ a
 + 3]j
  cos \ + j + 3]j9 � sin(\ + j) − 3 + [ g sin \ = 0

From 2nd eqn
7
78 [3]�j9 + 3]a9  cos(\ + j)] + 3]a9j9 sin \ + j + 3g] sin j = 0

3]�j
 + 3]a
 cos \ + j + 3g] sin j = 0



Problems with generalized force 



Example-6

X

Y

\



Example-7; Ring & mass on horizontal plane

R

o
X

Y

�

� = Co9 p	�Y? o @ ?



Example-8; Wedge & Block under friction, f

\

r

a

X

Y

Generalized coordinate (r, a)

The Table is friction less!

�




