PH101

Lecture 9

Review of Lagrange’s equations from D’ Alembert’s Principle,
Examples of Generalized Forces a way to deal with friction,
and other non-conservative forces



D’Alembert’s principle of virtual work

If virtual work done by the

(er _ m?) . 87 = 0 —~ D’Alembert’s principle of Virtual work

Now, for a general system of N particles having virtual

displacements, 87y, 875,....., 6Ty,
N
z( Fie —m;r;)-01; =0 F;, —Applied force on iy, particle
i=1

. )

Does not necessarily means that individual terms of the summation are zero as
T; are not independent, they are connected by constrain relation




Lagrange’s equation from D’Alembert’s principle

U D’Alembert’s principle,

= A
Constraint forces are out of the game! ;;

N
Z(Fie —mry) - 6r; = 0
i=1

Now, no need of additional subscript, we

‘ shall simply write F; instead of Fj,
But How to express this relation so that individual terms
in the summation are zero?

Switch to generalized coordinate system as they are independent!

Let’s take the 15t term

arl < 7 arl <
ZF 87 = ZF (Sq] Z Z ;. aq] 0q; = Z Q;oq;

j=1

.\\
, 0r; —— Generalized force 7
0=y (o

l
0q; O Dimensions of Q; is not always of force! \ /

O Dimensions of Q;8q; is always of work!

i



d

Lagrange’s equation from D’Alembert’s principle

20d Term:

Zm T - 01 = Zm T

U Bit of rearrangement in derivatives

Time and coordinate derivative
can be interchanged!

d (o7 _(o7:
dt aq; aq]-

dot cancellation!




Lagrange’s equation from D’Alembert’s principle

O Thus 2™ term becomes

imi?’i . 67, = Z]:m ’a{d_q] (5 7i >} —aiqjefiz)] e
z [dt {aq] (Z 2" >} ) @(E%m#)‘ 5

The 15t term

_Z d (0T oT 5
B dt E)ql aqj qJ



Lagrange’s equation from D’Alembert’s principle

L D’Alembert’s principle in generalized coordinates becomes

d<6T) }5 zQ(S
94, aq, dj = jo4;

>l
3 [ () -2

Well, we are very close
to Lagrange’s equation!

O Since generalized coordinates q; are all independent each
term in the summation is zero

OV 6V~ av; . dx; 0y; 0z .
T+ —k]. I+ +—k
d (0T oT “\ox, "oy’ "oz, dq;  dq;°  0q;
dt\oq;) aq; ’ :_(avi dx; 0V dy;  aV; azi>
/ dx;0q; 0y;0q; 0z;0q;
Q If all the forces are ceifservative, then ﬁi = —l7Vi
0 _z( 17V) or; av; GZV_ v
/ '/ 0q; ; 0q; 0q; l_ ' 0q;




Lagrange’s equation from D’Alembert’s principle

Hence,
d(@T) o _
_ av
3 Assume that V does not depend on ¢;, then 34, =0
J
d (o T —V)
d ( oL ) oL
dt aq]- aq]
Where,

We have reached to Lagrange’s equation from D’ Alembert’s
principle.



Review of the steps we followed

O Started from Newton’s law
mr = 13'; + fc
O Taken dot product with virtual displacement to kick out constrain force from the game
by using f.- 7 = 0 ; Arrive at D’ Alembert’s principle (ﬁe —mr - 67)- 67 =0

0 Extended D’ Alembert’s principle for a system of particles;
N
Z(Fie —m;r;) - 6T; =0
i=1

L Converted this expression in generalized coordinate system that “every” term of
this summation is zero to get

d (0T oT — Q. This is a more general expression!
dt\od q i 0 q j J
L Now, with the assumptions: i) Forces are conservative, ﬁi = —\7Vi , hence
av .. . . ov
Q; = —%— and 11) potential does not depend on g j> then — =
aq; 0qj

We get back our Lagrange’s eqn., d [/ adL oL i
dt\dq;) adq;



Discussion on generalized force

A system rnay experience both conservative, non-conservative forces
— Nnc

i,e. F = F + F;
L Hence generalized force for the system

0 —Zﬁ aﬁ-_Z(F +ﬁnC) aﬁ_zﬁc aFi-I—Zﬁnc aﬁ-
J laq]' dq; o dq; : l dq;

[ [ [

Q] — Q]C + QjTlC

c _ z L c 07 [ Generalized force corresponding to
2 |:> conservative part

z = E 0T |:> O Generalized force corresponding to
non-conservative part



Lagrange’s equation with both conservative and non

conservative force

O If system may experience both conservative, non-conservative forces

d (oT\ oT . .
dt(aqi>__-_Qj O

U Generalized force corresponding to conservative force can be derived

from potential Q;° = ——

aq;
d (0T oT 1%
_(_> —_— — __+ Q]TLC
dt\dq;) 0Jq; aq;
d( 0 -1 — (T =) _ o 1 Assume that V doesé‘rllot
dt (04, aq; J « depend on ¢;, thena_qj =0

d(oL\ oL ..
%(a_cyl-)_a_qj_Qf @a -7-v



More on Lagrange’s equations




Example-S

Example 5: A mass M slides down a frictionless plane inclined at angle «.
A pendulum, with length [, and mass m, is attached to M. Find the
equations of motion. For small oscillation




Example-S

X
M
S N
\ N (2, ¥2)
6
(1, y1)
o

Four constrains equations
Z1 = 0, Zy = 0

(V2 — ¥1) 2+ (x, — x1)*= 17

Step-1: Find the degrees of freedom and choose suitable
generalized coordinates

Two particles N = 2, no.of constrains (k) = 4
thus degrees of freedom =3 X2 —4 =2
Hence number of generalized coordinates must be two.

‘s’and ‘@’ can serve as generalized coordinates (they are
independent nature)




Example-5 continued ....

Step-2: Find out transformation relations

All the constrains

Xy, =S COsSa;y, =S Sina
Xy =s cosa+lsinf;y;, =s sina+[lcosf

relations have been
b included in  the

Step-3: Write T and V in Cartesian

problem through
these relationship

1 1
T = Em(a’clz +9.%) + §M(5622 +7,%)
V= -mgy, — Mgy, From
transformation
Step-4:Convert equation
T and V in generalized coordinate using transformation l

1 . - 1
T ==m[$? +1%0% + 2150 cos(a + 0)] +=Ms?

\Y

2
= —mg(ssina + lcosf) — Mgs sina

2

X, =S cosa; y, =Ssina
X1 =8 cosa+lcosB0b;
yi =ssina —1lsinf 6




Example-5 continued ....

Step-5: Write down Lagrangian
L=T-V

1 ] y 1
L= Em[s2 + 1262 + 2130 cos(a + 0)] + EMSZ

+mg(ssina + lcosf) + Mgs sina

Step-5: Write down Lagrange’s equation for each generalized coordinates

d(oL\_oL_ d(oL\ oL _
ACE R TACT Y AT

d .
a[ms’+ml0cos(cx+9) + Ms] —mgsina — Mgsina =0

(m + M)§ + mlf cos(a + 0) + ml?sin(a +0) — (m+ M)gsina = 0

From 1% eqn

From 2" eqn

d : .
I [ml?20 + mls cos(a + 0)] + mls@ sin(a + 0) + mglsinf =0

mi?6 + mls cos(a + 0) + mglsind = 0




Problems with generalized force




Example-6

Y
A




Example-7; Ring & mass on horizontal plane

Y
A

Find 6(t)? f =C6?




Example-8; Wedge & Block under friction, f

> =

The Table is friction less!

Generalized coordinate (X, s)



QUESTIONS PLEASE



