Lecture 10:
 Vector fields, Curl and Divergence

Rafikul Alam
Department of Mathematics
IIT Guwahati

Vector fields

Definition: A vector field in \mathbb{R}^{n} is a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ that assigns to each $\mathbf{x} \in \mathbb{R}^{n}$ a vector $F(\mathbf{x})$. A vector field in \mathbb{R}^{n} with domain $U \subset \mathbb{R}^{n}$ is called a vector field on U.

Geometrically, a vector field F on U is interpreted as attaching a vector to each point of U. Thus, there is a subtle difference between a vector field in \mathbb{R}^{n} and a function from \mathbb{R}^{n} to \mathbb{R}^{n}.

When a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is viewed as a vector field, for each x the vector $F(\mathbf{x})$ is identified with the vector that starts at the point \mathbf{x} and points to $F(\mathbf{x})$, i.e., $F(\mathbf{x})$ is identified with the vector that is obtained by translating $F(\mathbf{x})$ to the point \mathbf{x}.

Thus every vector field on $U \subset \mathbb{R}^{n}$ is uniquely determined by a function from $U \rightarrow \mathbb{R}^{n}$.

Examples of vector fields

- The gravitational force field describes the force of attraction of the earth on a mass m and is given by

$$
\mathbf{F}=-\frac{m M G}{r^{3}} \mathbf{r}
$$

where $\mathbf{r}:=(x, y, z)$ and $r:=\|\mathbf{r}\|$. The vector field F points to the centre of the earth.

- The vector field $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $F(x, y):=(-y, x)$ is a rotational vector field in \mathbb{R}^{2} which rotates a vector in the anti-clockwise direction by an angle $\pi / 2$.
- Let $\mathbf{x}:[0,1] \rightarrow \mathbb{R}^{n}$ be C^{1} and $\Gamma:=\mathbf{x}([0,1])$. Then $F: \Gamma \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by $F(\mathbf{x}(t))=\mathbf{x}^{\prime}(t)$ is a tangent vector field on Γ.

FIGURE 2
Vector field on \mathbb{R}^{2}

FIGURE 3
Vector field on \mathbb{R}^{3}

FIGURE 4
$\mathbf{F}(x, y)=-y i+x j$

Figure: Examples of vector fields

Hurricane Katrina \{using only 'asc' data\} [2005 Aug 28]

Figure: Vector field representing Hurricane Katrina

figune 9
$\mathrm{f}_{(1, y, z)}=y \mathbf{i}+z \mathbf{j}+x \mathbf{k}$

FIGURE 10
$\mathbf{F}(\mathbf{x}, y, z)=y \mathbf{i}-2 \mathbf{j}+x \mathbf{k}$

Figure: Examples of vector fields

Scalar fields

A function $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a scalar field on U as it assigns a number to each point in U.

The temperature of a metal rod that is heated at one end and cooled on another is described by a scalar field $T(x, y, z)$. The flow of heat is described by a vector field. The energy or heat flux vector field is given by $\mathbf{J}:=-\kappa \nabla T$, where $\kappa>0$.

- Let F be a vector field in \mathbb{R}^{n}. Then $F:=\left(f_{1}, \ldots, f_{n}\right)$ for some scalar fields f_{1}, \ldots, f_{n} on \mathbb{R}^{n}. We say that F is a C^{k} vector field if f_{1}, \ldots, f_{n} are C^{k} functions.

All vector fields are assumed to be C^{1} unless otherwise noted.

Gradient vector fields

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{1} scalar field then $\nabla f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a vector field in \mathbb{R}^{n}.

- A vector field F in \mathbb{R}^{n} is said to be a gradient vector field or a conservative vector field if there is a scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $F=\nabla f$. In such a case, f is called a scalar potential of the vector field F.

Obviously not every vector field is a gradient vector field.
Example: The vector field $F(x, y):=(y,-x)$ is not a gradient vector field. Indeed, if $F=\nabla f$ then $f_{x}=y$ and $f_{y}=-x$.

Consequently, $f_{x y}=1$ and $f_{y x}=-1$. Hence F is NOT a C^{1} vector field, which is a contradiction.

Integral curves for vector fields

Definition: Let F be a vector field in \mathbb{R}^{n}. Then a C^{1} curve $\mathbf{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is said to be an integral curve for the vector field F if $F(\mathbf{x}(t))=\mathbf{x}^{\prime}(t)$ for $t \in[a, b]$.

Obviously, F is a tangent (velocity) vector field on the integral curve. Thus integral curves provide a geometric picture of a vector field.

Integral curves are also called flow lines or streamlines.
An integral curve may be viewed as a solution of a system of ODE. Indeed, for $n=3$ and $F=(P, Q, R)$, we have

$$
\begin{aligned}
x^{\prime}(t) & =P(x(t), y(t), z(t)), \\
y^{\prime}(t) & =Q(x(t), y(t), z(t)), \\
z^{\prime}(t) & =R(x(t), y(t), z(t)) .
\end{aligned}
$$

Example

Find integral curves for the vector field $F(x, y)=(-y, x)$.
Note that $\mathbf{r}(t)=(\cos t, \sin t)$ is an integral curve for F. The other integral curves are also circles and are of the form

$$
\gamma(t):=\left(r \cos \left(t-t_{0}\right), r \sin \left(t-t_{0}\right)\right) .
$$

This follows from the system of ODE $x^{\prime}=-y$ and $y^{\prime}=x$ which gives $x^{\prime \prime}+x=0$.

Divergence of vector fields

Definition: Let $F=\left(f_{1}, \ldots, f_{n}\right)$ be a vector field in \mathbb{R}^{n}. Then the divergence of F is a scalar field on \mathbb{R}^{n} given by

$$
\operatorname{div} F=\partial_{1} f_{1}+\cdots+\partial_{n} f_{n}=\frac{\partial f_{1}}{\partial x_{1}}+\cdots+\frac{\partial f_{n}}{\partial x_{n}}
$$

Define the del operator

$$
\nabla:=\left(\partial_{1}, \ldots, \partial_{n}\right)=\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right)=\mathbf{e}_{1} \frac{\partial}{\partial x_{1}}+\cdots+\mathbf{e}_{n} \frac{\partial}{\partial x_{n}}
$$

Then applying ∇ to a scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we obtain the gradient vector field

$$
\nabla f=\left(\partial_{1} f, \ldots, \partial_{n} f\right)
$$

Divergence of vector fields

Taking dot product of ∇ with a vector field $F=\left(f_{1}, \ldots, f_{n}\right)$ we obtain the divergence

$$
\nabla \bullet F=\partial_{1} f_{1}+\cdots+\partial_{n} f_{n}=\operatorname{div} F
$$

Physical interpretation: If F represents velocity field of a gas (or fluid) then $\operatorname{div} F$ represents the rate of expansion per unit volume under the flow of the gas (or fluid).

The divergence of $F=\left(x^{2} y, z, x y z\right)$ is given by

$$
\operatorname{div} F=2 x y+0+x y=3 x y
$$

Examples

- The streamlines of the vector field $F(x, y):=(x, y)$ are straight lines directed away from the origin.

For fluid flow, this means the fluid is expanding as it moves out from the origin, so div F should be positive. Indeed, we have

$$
\operatorname{div} F=2>0
$$

- Next, consider the vector field $F(x, y):=(x,-y)$. Then

$$
\operatorname{div} F=0
$$

so that neither expansion nor compression takes place.

Cross product in \mathbb{R}^{3}

The cross product of vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{3} denoted by $\mathbf{u} \times \mathbf{v}$ is the unique vector satisfying the following conditions:

- $\mathbf{u} \perp(\mathbf{u} \times \mathbf{v})$ and $\mathbf{v} \perp(\mathbf{u} \times \mathbf{v})$.
- $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$, where $0 \leq \theta \leq \pi$ is the angle between \mathbf{u} and \mathbf{v}.
- $\operatorname{det}(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}) \geq 0$, where $[\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}]$ is the matrix whose columns are \mathbf{u}, \mathbf{v} and $\mathbf{u} \times \mathbf{v}$.

Cross product in \mathbb{R}^{3}

It is customary to denote the standard basis in \mathbb{R}^{3} by

$$
\mathbf{i}:=(1,0,0), \mathbf{j}:=(0,1,0) \text { and } \mathbf{k}:=(0,0,1) .
$$

If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$ then

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left(u_{2} v_{3}-v_{2} u_{3}\right) \mathbf{i}+\left(u_{1} v_{3}-v_{1} u_{3}\right) \mathbf{j}+\left(u_{1} v_{2}-v_{2} u_{1}\right) \mathbf{k} \\
& =\operatorname{det}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|
\end{aligned}
$$

the last equality is only symbolic.

Curl of vector fields in \mathbb{R}^{3}

The curl of a vector field $F=\left(f_{1}, f_{2}, f_{3}\right)$ in \mathbb{R}^{3} is a vector field in \mathbb{R}^{3} and is given by

$$
\operatorname{curl} F=\nabla \times F=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial_{1} & \partial_{2} & \partial_{3} \\
f_{1} & f_{2} & f_{3}
\end{array}\right|=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
f_{1} & f_{2} & f_{3}
\end{array}\right| .
$$

Thus curl of F is obtained by taking cross product of the del operator $\nabla=\frac{\partial}{\partial x} \mathbf{i}+\frac{\partial}{\partial y} \mathbf{j}+\frac{\partial}{\partial z} \mathbf{k}$ with $F=f_{1} \mathbf{i}+f_{2} \mathbf{j}+f_{3} \mathbf{k}$.

Curl of a vector field represents rotational motion when, for example, the vector field represents flow of a fluid.

Irrotational vector field

A vector field F in \mathbb{R}^{3} is called irrotational if curl $F=0$. This means, in the case of a fluid flow, that the flow is free from rotational motion, i.e, no whirlpool.

Fact: If f be a C^{2} scalar field in \mathbb{R}^{3}. Then ∇f is an irrotational vector field, i.e., $\operatorname{curl}(\nabla f)=0$.

Proof: We have $\operatorname{curl}(\nabla f)=\nabla \times \nabla f=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ f_{x} & f_{y} & f_{z}\end{array}\right|=0$ because of the equality of mixed partial derivatives.

Observation: If curl $F \neq 0$ then F is not a conservative (gradient) vector field.

Examples

- Let $F(x, y, z):=(x y,-\sin z, 1)$. Then
$\operatorname{curl} F=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x y & -\sin z & 1\end{array}\right|=(\cos z, 0,-x)$.
- Let $F(x, y, z):=(y,-x, 0)$. Then curl $F=(0,0,-2)$ and so F is not a conservative vector field.
- Let $F(x, y, z):=(y \mathbf{i}-x \mathbf{j}) /\left(x^{2}+y^{2}\right)$. Then curl $F=0$ and hence F is irrotational. However, F is NOT a conservative vector field, that is, $F \neq \nabla f$ for some scalar potential f.

Scalar curl

Let $F=(P, Q)$ be a vector field in \mathbb{R}^{2}. Then identifying \mathbb{R}^{2} with the x - y plane in \mathbb{R}^{3}, F can be identified with the vector field $F=P \mathbf{i}+Q \mathbf{j}$ in \mathbb{R}^{3}. Then we have

$$
\operatorname{curl} F=\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathbf{k} .
$$

The scalar field $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}$ is called the scalar curl of the vector field $F=(P, Q)$.

The scalar curl of $F(x, y):=\left(-y^{2}, x\right)$ is given by

$$
\partial_{x}(x)-\partial_{y}\left(-y^{2}\right)=1+2 y .
$$

Divergence of curl

Fact: Let F be a C^{2} vector field in \mathbb{R}^{3}. Then

$$
\operatorname{div}(\operatorname{curl} F)=\nabla \bullet \nabla \times F=0
$$

Proof: Since

$$
\operatorname{curl} F=\left(\partial_{y} f_{3}-\partial_{z} f_{2}\right) \mathbf{i}+\left(\partial_{z} f_{1}-\partial_{x} f_{3}\right) \mathbf{j}+\left(\partial_{x} f_{2}-\partial_{y} f_{1}\right)
$$

$\operatorname{div}(\operatorname{curl} F)=0$ because the mixed partial derivatives are equal.
A vector field F in \mathbb{R}^{3} is said to have vector potential if there exists a vector field G in \mathbb{R}^{3} such that $F=\operatorname{curl} G$.

Observation: If F has a vector potential then $\operatorname{div}(F)=0$.

Laplace operator

Example: If $F(x, y, z):=(x, y, z)$ then $\operatorname{div} F=3 \neq 0$ so F does not have a vector potential.

Laplace operator ∇^{2} : Let f be a C^{2} scalar field in \mathbb{R}^{n}. Then

$$
\nabla^{2} f:=\nabla \bullet \nabla f=\operatorname{div}(\nabla f)=\partial_{1}^{2} f+\cdots+\partial_{n}^{2} f
$$

defines the Laplace operator ∇^{2} on f.
For a C^{2} function $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ the partial differential equation

$$
\nabla^{2} u=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=0
$$

is called Laplace equation.

Summary

Let F be a C^{2} vector field in \mathbb{R}^{3} and $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a C^{2} scalar field. Then

- $\operatorname{div} F=\nabla \bullet F$ and $\operatorname{curl} F=\nabla \times F$,
- $\operatorname{div}(\nabla u)=\nabla^{2} u$ and $\operatorname{curl}(\nabla u)=\nabla \times \nabla u=0$,
- $\operatorname{div}(\operatorname{curl} F)=\nabla \bullet \nabla \times F=0$.

$$
\text { *** End } * * *
$$

