
Homework Part-II
Theory of Computation
CS205@IITG Spring ’25 R. Inkulu

12. [20th Feb]

(i) In the proof of Thereom 5.9 on pg 223 of [Sip], assuming input TM M is an NTM, give details
of Step (1) to simulate M on w while counting the number of IDs encountered along each branch
of computation. You may detail the automata as well.

11. [19th Feb]

(i) Devise an algorithm to implement Step (2) in the proof of Theorem 4.7 on pg 198 of [Sip]. (a

solution could be provided in tomorrow’s class)

(ii) Given an undirected unweighted (finite) graph G(V,E) in adjacency list form and a vertex s ∈
V , provide details of a TM M that does a breadth-first traversal of G, starting at s. The output
tape of M should consists of all the vertices of G that belong to the same component as s.

(iii) Given a directed unweighted (finite) graph G(V,E) in adjacency matrix form and two vertices
s, t ∈ V , provide details of a TM M that traverses G in depth-first order to find whether there is
a path from s to t in G.

10. [18th Feb]

(i) Construct a DTM that takes an encoding < N > of an NFA N as input and outputs an encoding
< D > of DFA D corresponding to N such that L(D) = L(N).

(ii) Construct a DTM that takes an encoding < R > of a regular expression R as input and outputs
an NFA N corresponding to R such that L(N) = L(R).

(iii) Give the details of an UTM M1 that takes an encoding < P > of a DPDA P and w ∈ Σ∗ as
input and simulates P on w such that M1 always halts and < P,w >∈ L(M1) iff P accepts w.

9. [13th Feb]

(i) Following Theorem 9.4 on pg 222 of [HU], give an unrestricted grammar G so that L(G) =
L(M2), where the DTM M2 is as given on page 172 of [Sip]. And, show that 0000 ∈ L(G).

(ii) For the grammar G in Example 9.4 on pg 220 of [HU], following the proof of Theorem 9.3 on
pg 221 of [HU], give a two-tape NTM N with all the details (including the automata) so that
L(N) = L(G). Also, by giving a sequence of IDs, show that aaaa ∈ L(N).

(iii) Give a detailed description of a TM, including the automata, to non-deterministically print two
positive unary integers, separated by a #. Each branch of its computation needs to print a unique
tuple of integers, and printing the tuple 200, 300 causes graceful exit.

8. [12th Feb]

(i) While following the construction on pg 162 of [HU] Fig. 7.9, give detailed descriptions’ of four-
track Turing machines which would simulate the steps of Turing machines that you gave for
Problem (i) of 11th Feb.

http://www.iitg.ac.in/rinkulu/


(ii) Devise a DTM that prints positive integers in sorted order on one of its tapes, with every two
successive numbers separated by a #.

(iii) Consider the NFA N in [HU] pg 20 Fig. 2.5. Give an NTM T such that L(N) = L(T ). Based
on T ’s transition function, draw the computation tree of T . Identify at least one node in T
that accepts 01001. List the IDs at nodes of this tree that are encountered in simultating T ’s
computation with a DTM.

(iv) Supposing there is a node of maximum depth d in the computation tree T of an NTM N which
accepts the input w ∈ Σ∗ ∩ L(N), upper bound the total number of transitions executed in the
DTM D that simulates N , wherein D is constructed as described in the proof of Theorem 7.3
on pg 164 of [HU].

7. [11th Feb]

(i) Give two-tape Turing machines to accept the following languages: (i) {ww |w ∈ {0, 1}∗}, and
(ii) {wwR |w ∈ {0, 1}∗}.

(ii) Design a Turing machine to add two floating point numbers. You may assume any standard
representation for the floating point numbers.

(iii) Provide the corresponding transitions for a standard DTM (semi-infinite tape with L and R
options for the tape head) so that it can simulate each step of a single-tape two-way infinite
two-track DTM that has the stay put option as well.

6. [6th Feb]

(i) Considering the PDA P ′ constructed in class by dovetailing a DFA D with a PDA P to achieve
L(D) ∩ L(P ) = L(P ′), given any w ∈ Σ∗, prove by induction on i, (δD(d0, w) = d and
(p0, w, γ1) ⊢i

P (p, ϵ, γ)) implies ([d0, p0], w, γ1) ⊢i
P ′ ([d, p], ϵ, γ).

5. [5th Feb]

(i) Using pumping lemma for context-free languages, show that {aibjaibj | i ≥ 1, j ≥ 1} is not
context-free.

(ii) Prove L = {aibjckdℓ | either i = 0 or j = k = ℓ} is not context-free.

Considering bjckdℓ ∈ L, show the converse of pumping lemma for context-free languages not
necessarily holds.

(iii) For L = {w |w ∈ {a, b}∗ is not a palindrome}, considering apbp ∈ L, show the converse of
pumping lemma for regular languages not necessarily holds. [Hint: As argued in a video lecture, since L is

shown to be non-regular, L cannot be regular.]

4. [4th Feb]

(i) [Sip] pg 157 exer 2.30 (a), (b), and (c).

3. [30th Jan]

(i) [Sip] pg 88 exer 1.29 (a), (b).

(ii) With the algorithm in the proof of Theorem 2.4 of [HU], give a regular expressions correspond-
ing to DFAs in [Sip] pg 86 exer 1.21.



(iii) With the algorithm in the proof of Theorem 2.3 of [HU], construct NFAs to accept languages of
regular expression on [Sip] pg 86 exer 1.20 (e), (h).

2. [29th Jan]

(i) [Sip] pg 88 exer 1.31.

(ii) Let N1 and N2 be as defined in the below problem. Using the construction given in showing the
intersection operation is closed for regular languages, give a DFA for L(N1) ∩ L(N2).

(iii) Let N1 (resp. N2) be the NFA in [Sip]: 86 exer 1.16(a) (resp. 1.16(b)). Using the construction
from the below problem, construct DFAs D1 and D2 such that L(D1) = L(N1) and L(D2) =
L(N2).

(iv) Given an NFA N(Q,Σ, δ, q0, F ), by combining proofs of Theorems 2.1 and 2.2 in [HU], provide
a direct proof showing there is a DFA D(Q′(⊆ 2Q),Σ, δ′, ϵ-closure(q0), F ′) with L(D) =
L(N). Here, ∀S∈Q′δ′(S, α) = {q ∈ Q |q ∈ ϵ-closure(δ(qs, α)) for some qs ∈ S and α ∈ Σ},
and F ′ = {S ∈ Q′ |S contains an accept state of N}.

1. [28th Jan]

(i) Given an NFA N , determine whether the language of NFA obtained by swapping the accepts
states of N to reject states and vice versa is L(N).

(ii) Let N1 (resp. N2) be the NFA in [Sip]: 86 exer 1.16(a) (resp. 1.16(b)). Using the construction
given in today’s class (proofs of Theorems 2.1 and 2.2 in [HU]), construct DFAs D1 and D2

such that L(D1) = L(N1) and L(D2) = L(N2). [Hint: For N2, in the first phase, construct an
NFA with no ϵ-transitions.]


