
coNP R. Inkulu

• Since the class NP is not known to be closed under complementation, motivating us to define and stury
the following complexity class: coNP = {L : L ∈ NP}.

* SAT = {< ϕ > |ϕ is a boolean formula in conjunctive normal form and ϕ is not satisfiable}, HAMPATH,
SUBSETSUM ∈ coNP.

Since TAUTOLOGY = {< ϕ > : there is a truth assignment for which the boolean formula ϕ is false}
belongs to NP,
TAUTOLOGY = {< ϕ > : boolean formula ϕ is satisfiable by every truth assignment} ∈ coNP.

* L ∈ NP: for every w ∈ L, there is a proof (certificate) c of length polynomial in |w| so that a polynomial
time verifier (a DTM) for L on input < w, c > could verify w belongs to L

L ∈ coNP: for every w /∈ L, there is a proof (certificate) c of length polynomial in |w| so that a polynomial
time verifier (a DTM) for L on input < w, c > could verify w belongs to L (that is, every no instance w
of L has a short refutation to claim w /∈ L)

L ∈ NP ∩ coNP: both the yes and no instances w of L have proofs (certificates) of length polynomial in
|w|

* Most believe NP ̸= coNP since it does not seem that a short certificate could exist to verify a given boolean
formula belongs to TAUTOLOGY.
(To remind, most believe P ⊊ NP due to following reasons: (i) verifying solution to a problem is in general easier to finding a solution itself; (ii)

P is closed under complement whereas NP is not known to be closed under complementation: given any polynomial time NTM based decider N

(that is, L(N) in NP), constructing a polynomial time NTM based decider for the complement of L(N) is open.

Noting a branch of computation rejecting input would let other branches continue computing, and a branch accepting halts all branches, toggling

accept states to reject states and reject states to accept states in an NTM not necessarily decide L(N). Significantly, rejecting along a branch

doesn’t necessarily mean NTM will reject the input and hence it is not right to accept along that branch. That is, NTM model of computation

does not have a provision to accept the input whenever all branches reject.)

• P ⊆ NP ∩ coNP.

proof: L ∈ P⇒ L ∈ P (since P is closed under complement)⇒ L ∈ NP⇒ L ∈ coNP

• If P = NP then NP = coNP. That is, if NP ̸= coNP then P ̸= NP.

proof:

NP ⊆ coNP: L ∈ NP⇒ L ∈ P (since P=NP)⇒ L ∈ P⇒ L ∈ NP⇒ L ∈ coNP

coNP ⊆ NP: L ∈ coNP⇒ L ∈ NP⇒ L ∈ P (since P=NP)⇒ L ∈ P⇒ L ∈ NP

- contrapositive: If NP ̸= coNP then P ̸= NP.

• coNP ⊆ PSPACE.

proof: NP ⊆ PSPACE⇒ coNP ⊆ coPSPACE; however, coPSPACE = PSPACE

1

http://www.iitg.ac.in/rinkulu/

• PRIMES = COMPOSITES = {< n > |n is a positive integer and n is a composite number} ∈ NP

* PRIMES = {< n > |n is a positive integer and n is a prime number} ∈ NP ← for Pratt’s algorithm, refer to [HU]

or the last page of this note

- Till ’02, PRIMES problem was only known to be in NP ∩ coNP (but not known to be in class P). This is
when AKS1 algorithm proved PRIMES is in indeed in class P.2

• INTFACTORIZATION = {< n, a, b > |n, a, b are positive integers encoded in binary and there is a
prime number p ∈ [a, b] that divides n} ∈ NP

* INTFACTORIZATION = {< n, a, b > |n, a, b are positive integers encoded in binary and there is no
prime number p ∈ [a, b] that divides n} ∈ NP

- As of now, there is no known polynomial time algorithm for the integer factorization problem, hence this
problem is known to be in NP ∩ coNP but we do not know whether it belongs to class P. The best factoring
algorithm runs in time 2O((lgn)1/3

√
lg lgn).

• A language L is said to be coNP-hard if ∀L′∈coNPL
′ ≤p L, equivalently, ∀L′∈NPL

′ ≤p L. However, this
says, L is NP-hard.

Therefore, L is coNP-hard iff L is NP-hard. Hence, to prove L is coNP-hard, one could prove L is
NP-hard.

* A language L is said to be coNP-complete whenever L ∈ coNP and L is coNP-hard.

* L ∈ NP-complete ⇔ L ∈ coNP-complete.

* TAUTOLOGY is coNP-complete.

proof: we already proved TAUTOLOGY ∈ coNP; since SAT is NP-hard, we give SAT ≤p TAUTOLOGY, equivalently, SAT ≤p TAUTOL-

OGY; ϕ ∈ SAT iff f(ϕ) = ¬ϕ ∈ TAUTOLOGY, for mapping reduction f that can be computed in polynomial time

• In conclusion, this is what the general belief or the conjectured relation of these classes is:

NPC P coNPC

PSPACE

SAT
SAT

GI
GIPRIMES

FACTORIZATION

NP coNP

GI stands for GRAPH ISOMORPHISM problem

1named after M. Agarwal, N. Kayal, and N. Saxena
2Narendra Karmarkar’s weakly polynomial time algorithm for linear programming, found in ’84, is another result by our coun-

trymen, which is also as famous as this one is.

2

Again, we do not have any proofs to claim whether NP ̸= coNP, P ̸= NP ∩ coNP, P ̸= NP, P ̸= coNP, NP
⊂ PSPACE, coNP ⊂ PSPACE, . . .

• An NP-complete language is in coNP iff NP = coNP.

⇐ obvious

⇒ proof of NP ⊆ coNP: let L be the language that is NP, NP-hard, and coNP; since L is NP-hard, ∀L′∈NPL′ ≤p L, equivalently,
∀L′∈NPL′ ≤p L; since L ∈ coNP , L ∈ NP ; hence, L has an NTM based polynomial time decider; a polynomial time NTM for L′

on input x would first compute f(x) (here f is a polynomial time reduction function) and supply it to the NTM for L, therefore, L′ ∈ NP

⇒ proof of coNP ⊆ NP: – homework –

* Corollary: Consistent with the general belief of NP ̸= coNP, till date, for no NP-complete language L, the
L is known to be in NP.

Pratt’s algorithm

Given a positive integer n in binary, the nondeterministic polynomial time algorithm devised herewith de-
termines whether n is a prime.

• Fermat’s little theorem: n > 2 is a prime iff for some integer x ∈ (1, n),

xn−1 ≡ 1 mod n, and ——— (1)

xi ̸≡ 1 mod n, for all i, 1 ≤ i < n− 1. ———- (2)

- however, checking (2) explicitly is computationally inefficient

- hence, noting below proposition

x(n−1)/pj ̸≡ 1 mod n for every prime pj in the prime decomposition of n− 1 ———- (3)3

implies (2), in designing algorithm, Pratt verifies (3) instead of (2)

• Observations: the input size is lg n since n is in binary; in any prime decomposition of n − 1, there
are at most lg (n− 1) numbers (since each number need to be at least 2) ; and, the size of every such factor is at
most lg (n− 1)

• isPrime(n): [n is encoded in binary]

(i) if n = 2 then return true [denoting n is a prime]

(ii) if n = 1 or n is an even integer > 2 then return false

(iii) nondeterministically guess an x ∈ (1, n)

(iv) if xn−1 ≡ 1 mod n [due to (1)]

(a) nondeterministically guess at most k′ = lg(n−1) numbers, each ∈ [2, n−1); let n1, . . . , nk′

be these numbers; reject if n1 · n2 · . . . · nk′ ̸= n− 1

3none of (2), (3), and (3) ⇒ (2) were proved in lectures

3

(b) for any j ∈ [1, k′] if isPrime(nj) is false then reject
//reaches here if n1n2 . . . nk′ is a prime decompositon of n− 1

(c) if x(n−1)/nj ̸≡ 1 mod n for every j ∈ [1, k′], then return true [due to (3)]

(v) return false

• time analysis: since modular exponentiation takes O((lg n)3) time, excluding recursive calls, this
code takes O((lg n)3) time; let t(ℓ) be the time along any branch of nondeterministic computation for
input of size ℓ; then,

t(lgn) = O((lgn)3) + t(lgn1) + t(lgn2) + . . .+ t(lgnk′)

= (lgn)3 + (lgn1)4 + (lgn2)4 + . . .+ (lgnk′)4 [guessing t(lg r) is (lg r)4 for any positive r, and substituting]

≤ O((lgn)3) + (lg (n1n2 . . . nk′))4

= O((lgn)3) + (lg (n− 1))4

= O((lgn)4)

4

