coNP R. Inkulu

* Since the class NP is not known to be closed under complementation, motivating us to define and stury
the following complexity class: coNP = {L : L € NP}.

* SAT = {< ¢ > | ¢ is a boolean formula in conjunctive normal form and ¢ is not satisfiable}, HAMPATH,
SUBSETSUM & coNP.

Since TAUTOLOGY = {< ¢ >: there is a truth assignment for which the boolean formula ¢ is false}
belongs to NP,
TAUTOLOGY = {< ¢ >: boolean formula ¢ is satisfiable by every truth assignment} € coNP.

* [€ NP: for every w € L, there is a proof (certificate) c of length polynomial in |w| so that a polynomial
time verifier (a DTM) for L on input < w, ¢ > could verify w belongs to L

L € coNP: forevery w ¢ L, there is a proof (certificate) c of length polynomial in |w| so that a polynomial
time verifier (a DTM) for L on input < w, ¢ > could verify w belongs to L (that is, every no instance w
of L has a short refutation to claim w ¢ L)

L € NP N coNP: both the yes and no instances w of L have proofs (certificates) of length polynomial in
|wl

* Most believe NP # coNP since it does not seem that a short certificate could exist to verify a given boolean
formula belongs to TAUTOLOGY.
(To remind, most believe P C NP due to following reasons: (i) verifying solution to a problem is in general easier to finding a solution itself; (ii)
P is closed under complement whereas NP is not known to be closed under complementation: given any polynomial time NTM based decider N
(that is, L(N) in NP), constructing a polynomial time NTM based decider for the complement of L(N) is open.

Noting a branch of computation rejecting input would let other branches continue computing, and a branch accepting halts all branches, toggling

accept states to reject states and reject states to accept states in an NTM not necessarily decide L(N). Significantly, rejecting along a branch
doesn’t necessarily mean NTM will reject the input and hence it is not right to accept along that branch. That is, NTM model of computation

does not have a provision to accept the input whenever all branches reject.)

e P C NP N coNP.

proof: L € P = L € P (since P is closed under complement) = L € NP = L € coNP
» If P = NP then NP = coNP. That is, if NP # coNP then P # NP.

proof:

NP C coNP: L € NP = L € P (since P=NP) =L € P=L € NP = L € coNP
coNP C NP: L € coNP = L € NP = L € P (since P=NP) = L € P = L € NP

- contrapositive: If NP # coNP then P # NP.
* coNP C PSPACE.

proof: NP C PSPACE => coNP C coPSPACE; however, coPSPACE = PSPACE

http://www.iitg.ac.in/rinkulu/

* PRIMES = COMPOSITES = {< n > |n is a positive integer and n is a composite number} € NP

* PRIMES = {< n > |nis a positive integer and n is a prime number} € NP « for Pratt’s algorithm, refer to [HU]

or the last page of this note

- Till 02, PRIMES problem was only known to be in NP N coNP (but not known to be in class P). This is
when AKS' algorithm proved PRIMES is in indeed in class P.”

* INTFACTORIZATION = {< n,a,b > |n,a,b are positive integers encoded in binary and there is a
prime number p € [a, b] that divides n} € NP

* INTFACTORIZATION = {< n,a,b > |n,a,b are positive integers encoded in binary and there is no
prime number p € [a, b] that divides n} € NP

- As of now, there is no known polynomial time algorithm for the integer factorization problem, hence this
problem is known to be in NP M coNP but we do not know whether it belongs to class P. The best factoring
algorithm runs in time 20((n)3VIglgn),

* A language L is said to be coNP-hard if Vp/cconp L’ <p L, equivalently, Vi v oL’ <, L. However, this
says, L is NP-hard.

Therefore, L is coNP-hard iff L is NP-hard. Hence, to prove L is coNP-hard, one could prove L is
NP-hard.

* A language L is said to be coNP-complete whenever L € coNP and L is coNP-hard.

* I € NP-complete < L € coNP-complete.
* TAUTOLOGY is coNP-complete.

proof: we already proved TAUTOLOGY &€ coNP; since SAT is NP-hard, we give SAT <, TAUTOLOGY, equivalently, SAT <, TAUTOL-
OGY; ¢ € SAT iff f(¢) = —¢ € TAUTOLOGY, for mapping reduction f that can be computed in polynomial time

* In conclusion, this is what the general belief or the conjectured relation of these classes is:
PSPACE

! S/ PRIMES GI
FACTORIZATION GI stands for GRAPH ISOMORPHISM problem

'named after M. Agarwal, N. Kayal, and N. Saxena
*Narendra Karmarkar’s weakly polynomial time algorithm for linear programming, found in ’84, is another result by our coun-
trymen, which is also as famous as this one is.

Again, we do not have any proofs to claim whether NP # coNP, P £ NP N coNP, P # NP, P # coNP, NP
C PSPACE, coNP C PSPACE, ...

* An NP-complete language is in coNP iff NP = coNP.
<= obvious

= proof of NP C coNP: let L be the language that is NP, NP-hard, and coNP; since L is NP-hard, Ve npL’ <, L, equivalently,
Viren pL’ <p L; since L € coNP, L € NP; hence, L has an NTM based polynomial time decider; a polynomial time NTM for L’/
on input z would first compute f(x) (here f is a polynomial time reduction function) and supply it to the NTM for L, therefore, I/ € NP

= proof of coNP C NP: — homework —

* Corollary: Consistent with the general belief of NP # coNP, till date, for no NP-complete language L, the
L is known to be in NP.

Pratt’s algorithm

Given a positive integer n in binary, the nondeterministic polynomial time algorithm devised herewith de-
termines whether n is a prime.

* Fermat’s little theorem: n > 2 is a prime iff for some integer x € (1,n),
2" 1=1 mod n,and — (1)
' #1 modn,foralli,1 <i<n—1.———(2)
- however, checking (2) explicitly is computationally inefficient
- hence, noting below proposition
2("=D/Pi £ 1 mod n for every prime p; in the prime decomposition of n — 1 ———— (3)°

implies (2), in designing algorithm, Pratt verifies (3) instead of (2)

» Observations: the input size is lgn since n is in binary; in any prime decomposition of n — 1, there
are at most 1g (n — 1) numbers (since each number need to be at least 2) ; and, the size of every such factor is at
most lg (n — 1)

® isPrime(n): [n is encoded in binary]

(1) if n = 2 then return true [denoting n is a prime]
(i) if » = 1 or n is an even integer > 2 then return false

(iii) nondeterministically guess an x € (1,n)

(iv) ifz" 1 =1 mod n [due to (1)]
(a) nondeterministically guess at most &’ = lg(n—1) numbers, each € [2,n—1);letng, ..., ng
be these numbers; rejectif ny -ng « ... -np #n — 1

3none of (2), (3), and (3) = (2) were proved in lectures

(b) forany j € [1, k'] if isPrime(n;) is false then reject
//reaches here if n1nsa . ..nys is a prime decompositon of n — 1
(c) if z(®1/" £ 1 mod n for every j € [1, k'], then return true [due to (3)]

(v) return false

* time analysis: since modular exponentiation takes O((Ign)?) time, excluding recursive calls, this
code takes O((lgn)?) time; let ¢(£) be the time along any branch of nondeterministic computation for
input of size /; then,

t(lgn) = O((1gn)?) + t(lgni) + t(lgna) + ... + t(lgngr)
= (Ign)3 + (Ign1)* + (Ign2)* + ...+ (Ign,)* [guessing t(lgr) is (Ig)% for any positive r, and substituting]
< O((1gn)?) + (Ig (n1na .. .ng))*

=0((1gn)?) + (g (n — 1))*

=0((gn)")

