- Given a set of n points, any subset of k points that can be separated from the other $n-k$ points by a hyperplane is called a k-set.

For the planar case, the upper bound on the number of k-sets in a set of n points is $O\left(n k^{1 / 3}\right)$. [Dey '98]

- First note the following: For a given set of n points in the plane in general position, a pair of points $p, q \in P$ form a k-set if there are exactly k points in the (closed) halfplane below the line passing through p and q.
- Consider the graph $G(P, E)$ that has an edge for every k-set edges of G can be decomposed into $k-1$ (resp. $n-k+1$) convex chains
any crossing of two edges of G is an intersection point of one convex chain of C_{1}, \ldots, C_{k-1} with a concave chain of D_{1}, \ldots, D_{n-k+1}; hence, there are at most $2(k-1)(n-k+1)$ crossings of $G \Rightarrow m^{3} / n^{2}=O(n k)$, which implies $m=O\left(n k^{1 / 3}\right)$

The maximum numebr of k-sets in a set of n points located in \mathbb{R}^{d} is still unknown.

- The k-level in an arrangement $A(H)$ induced by a set H of n hyperplanes is defined as the set of points with at most $k-1$ hyperplanes strictly above it, and at most $n-k$ hyperplanes strictly below it.

For the planar case, the upper bound on the complexity of any k-level in an arrangement of n lines is $O\left(n k^{1 / 3}\right)$.

- since the k-level problem is the k-set problem in the dual setting

The tight bounds on the maximum complexity of any k-level is still unknown, even in the planar case.

- Assuming lines are in general position, the number of vertices of level at most k in an arrangement $A(H)$ of set H of n lines in the plane is $O(n k)$.
* choose a subset $R \subseteq H$ at random, by including each line $h \in H$ into R with probability p; let f denote the number of vertices of level 0 in the arrangement $A(R) ; E[f] \leq E[|R|]=p n$
* for any vertex v of $A(H)$, let A_{v} be an event of v becoming one of the vertices of level 0 in $A(R) ; p\left[A_{v}\right]=p^{2}(1-p)^{\ell(v)}$, where $\ell(v)$ denotes the level of v in $A(H)$;
* let $V_{\leq k}($ resp. $V)$ be the set of vertices of level at most k (resp. 0) in $A(H)$;
$n p \geq E[f]=\sum_{v \in V} \operatorname{prob}\left(A_{v}\right) \geq \sum_{v \in V_{\leq k}} \operatorname{prob}\left(A_{v}\right)=\sum_{v \in V_{\leq k}} p^{2}(1-p)^{\ell(v)} \geq\left|V_{\leq k}\right| p^{2}(1-p)^{k} \Rightarrow\left|V_{\leq k}\right| \leq \frac{n}{p(1-p)^{k}} ;$ choosing $p=\frac{1}{k+1}$ to (approximately) maximize RHS gives $\left|V_{\leq k}\right| \leq 3(k+1) n$

Clarkson-Shor theorem: The number of vertices of level at most k in an arrangement of n hyperplanes in \mathbb{R}^{d} is $O\left(n^{\lfloor d / 2\rfloor}(k+1)^{\lceil d / 2\rceil}\right)$.

- proof is a generalization of the above argument
- Given a set of n points in the plane, any subset of at most k points that can be separated from all other point (there are at least $n-k$ of them) by a line is called a $(\leq k)$-set.
In the plane, the maximum number of $(\leq k)$-sets is $\Theta(n k)$, and it is $\Theta\left(n^{\lfloor d / 2\rfloor}(k+1)^{\lceil d / 2\rceil}\right)$ in \mathbb{R}^{d}.

References:

- Lectures on Discrete Geometry by J. Matousek.

