A few problems related to class NP R. Inkulu

Karp had shown the following famous 21 problems are NP-complete':

e (-1 integer programming

e clique

e set packing (level denotes SAT — clique — set packing)
e vertex cover

e set covering

feedback node set

feedback arc set

directed Hamiltonian circuit

e undirected Hamiltonial circuit

e 3-SAT

e chromatic number
e clique cover
e exact cover
e hitting set
e Steiner tree
e 3-dimensional matching
e knapsack
e job sequencing
e patition
e max cut

NP-complete satisfiability problems:

MAX2SAT = { < ¢,k > | 3 a truth assignment that satisfies at least k clauses of a 2cnf-formula ¢}.

MAXKSAT = { < ¢, > | 3 a truth assignment that satisfies at least r clauses of a k-cnf-formula
¢}

NAESAT? = {< ¢ > | 3 a truth assignment wherein for every clause ¢; € ¢ there exists at least one
true literal and one false literal}

MAXSAT: { < ¢,r > | 3 a truth assignment that satisfies at least r clauses of ¢}.
MINKSAT: { < ¢,r > | 3 a truth assignment that satisfies at most r clauses of a k-cnf-formula ¢}.

Monotone 3SAT: { < ¢ > | 3 a truth assignment that satisfies ¢ wherein all literals in every clause
of ¢ are either postive or negative}.

1-in-3SAT: { < ¢ > | 3 a truth assignment that satisfies ¢ while setting exactly one literal to true
in each clause of ¢}.

CIRCUIT-SAT: {< C > |C'is a satisfiable boolean circuit}.

known as Karp’s list of NP-complete problems
2Not All Equal SAT

http://fac.iitg.ac.in/rinkulu/

Planar 35AT:
Planar rectilinear 3SAT:
Planar monotone rectilinear 3SAT:

Planar 1-in-3SAT:

Satisfiability problems that have polynomial-time algorithms:

25AT: each clause has at most two literals

Horn SAT: each clause has < 1 positive literals
Dual-horn SAT: each clause has < 1 negative literals
DNF SAT: formula is V of clauses; clause is A of literals

planar circuit SAT: given a boolean circuit that can be embedded in the plane so that no two wires
cross, is there an input that makes the circuit output TRUE?

planar NAE 3SAT:

NP-complete graph-theoretic problems:

Dominating set: Given a graph G(V, E) and an integer parameter k, decide whether there exists a
set V! CV with |V’] <k of vertices such that for every vertex not in V' has a neighbor in V.

Independent set: Given a graph G(V, E) and an integer parameter k, decide whether there exists a
set V! C V with |V’| > k of vertices such that each edge in F incident on at most one vertex in V.

Maz bisection: Given an undirected graph G(V, E) and an integer parameter k, decide whether there
exists a vertex cut (S,V —S) of size k or more such that [S| = |V —S]|.

Bisection width: Given an undirected graph G(V, E) and an integer parameter k, decide whether
there exists a vertex cut (S,V —S) of size at most k such that [S| = |V — S]|.

Feedback verter set: Given an undirected graph G(V, E) and k, decide whether there exists V' C V
with |[V’| < k such that removing vertices in V' leaves G acyclic.

Feedback arc set: Given a directed graph G(V, E) and k, decide whether there exists E' C E with
|E’| < k such that removing arcs in E’ leaves G acyclic.

HAM-CYCLE: Decide whether the given directed/undirected graph G has a Hamiltonian cycle.

Traveling salesman tour: Given an undirected/directed edge-weighted graph G(V,E) and a param-
eter M, decide whether G has a Hamiltonian cycle of weight at most M .3

Multicommidity max-flow: Given a directed gaph D(V, A) and 2k nodes, si,..., Sk, t1,...tx in V,
are there node-disjoint directed paths from s; to t1, ss to to, ..., and s to 37

Graph coloring: Given a graph G(V, E) and k, decide whether the vertices (resp. edges) of G can be
colored using at most k colors.

Crossing number of G:

Minimum cost Steiner tree of G:

3 N P-complete in Euclidan plane as well

Set-theoretic NP-complete problems:

Set packing: Given a collection C' of finite sets, deciding whether there exists a set packing i.e., a
collection of disjoint sets C’ C C' such that the cardinality of C’ is k.

Set cover: Given a collection C of subsets of a finite set .S, deciding whether there exists a set cover
for X i.e., a subset C' C C such that every element in S belongs to at least one member of C’ and
the cardinality of the set cover C’ is at most k.

3-Ezact cover: Given a family F' = {S1,...,S,} of n subsets of S = {uq,...,usy,} each of cardinality
three, is there a subfamily of m subsets that covers S?7

Tripatrite (3-Dimensional) matching: Given three sets U, V', and W of equal cardinality, and a subset
T of U xV x W, is there a subset M of T' with |M| = |U| such that whenever (u,v,w) and (u’,v', w")
are distinct triples with M, u # v/, v # v/, and w # w'?

Hitting set: Given a collection C of subsets of a finite set S, deciding whether there exists a subset
S’ C S such that S’ contains at least one element from each subset in C s.t. the cardinality of S’ is
at most k.

NP-complete numerical problems:

Partition: Given integers ci, ..., cy, is there a subset S C {1,...,n} such that Ejes ¢ = Z]’gs c;?
(weakly NP-hard)

Integer knapsack: Given integers c¢j, j = 1,...,n and k are there integers ; > 0, j = 1,...,n such
that >, cjz; = k? (weakly NP-hard)

0-1 Knapsack: Given T = {(w1,p1), (w2,p2), ..., (wn, pn)}, where w;’s are positive integers (known
as weights) and p;’s are positive integers (known as profits), a positive integer b, and a positive
integer k, determine whether there is a subset T” of T' whose weights sum to at most b and profits
sum to at least k7 (weakly NP-hard)

Bin packing: Given a finite set U of items, a size s(u) € ZT for each u € U, and a positive integer
bin capacity B, finding a partition of U into disjoint sets Uy, Us, ..., Uy, such that the sum of the
items in each U; is B or less and the number of used bins (i.e, the number of disjoint sets) m is at
most k. (strongly NP-hard, unlike the last three problems!)

Miscellaneous NP-complete problems:

Multiprocessor scheduling: Given a set T of tasks, number m of processors, length [(t,i) € Z1 for
each task t € T and processor i € [1,...,m], deciding whether there exists an m-processor schedule
for T i.e., a function f : 7T — [1...m] s.t. the finish time for the schedule is at most t.

Job shop scheduling: Given n jobs of varying sizes, deciding whether there exists a schedule of these
jobs on m identical machines, such that the total length of the schedule is at most t.

Integer linear programming: Linear program in which each variable is restricted to be an integer,
deciding whether there exists a solution such that the minimizing (resp. maximizing) objective
function value is at most (resp. at least) k.

Quadratic programming:

Some interesting NP-intermediate (N PI) problems (problems that are proven to be in NP, but no
proof to claim to be either in P or in N P-complete; however, there is a strong evidence against these
belong to N P-complete, ex. some of the problems belonging to this class have quasi-polynomial time
algorithms):

e Positive integer factorization problem: {< n,a,b > |n,a,b are positive integers encoded in binary
and there is a prime number p € [a, b] that divides n}.

-this problem is proven to be in NP N coNP

-at present, there is no known polynomial time (O((Ign)) time for some constant k) algorithm; the
best factoring algorithm runs in time 20((8 n)'?VIglgn)

e Graph isomorphism € NP1
whereas, the subgraph isomorphism € N P-complete

e The discrete logarithm problem: given a,b belonging to a group G, determine whether there is a
x € G satisfying a® = b? (ex. determining whether there exists an integer z satisfying a® = b (mod
m) for given integers a, b, and m)

e The minimum circuit size problem: given the truth table of a boolean function and a positive integer
s, does there exist a circuit of size at most s for this function?

e determining whether a graph admits a graceful labeling
e determining whether the VC-dimension of a given family of sets is below a given bound

e all the problems in PPAD complexity class, each of which is as hard as finding Nash equilibria of
two-person games

e all the problems in UGL complexity class, each of which is as hard as unique games labeling problem

There are also many problems that are known to be NP-hard but not known to be in NP, ex., PSPACE-
hard problems.

e The primality problem: Given any positive integer n in binary, determine whether n is a prime.

-For this problem to belong to class P, there must exist an algorithm that takes O((lgn)*) time for
some constant k.

-unlike positive integer factorization problem, this problem is proven to be in P; this problem was in
NPI, up till a polynomial time primality testing algorithm was found in ’02

e Being the complement of primality problem, the composites problem = {n|n is a positive integer
and n is a composite (i.e., non-prime) number} is in class P as well

The following table shows a listing of closely related problems, one being known to be N P-complete
and the other is in class P:

] NP-complete \ P \
3SAT 2SAT, Horn SAT
traveling salesman problem | minimum spanning tree
minimum Steiner tree minimum spanning tree
vertex cover edge cover
longest path in graphs shortest path in graphs
maximum cut minimum cut
tripartite matching bipartite matching
indepdent set on graphs independent set on trees
Hamiltonian path Fulerian path
integer programming linear programming
k-colorability with k > 2 2-colorability
feedback arc set feedback edge set

e And, there are polynomial time algorithms for computing a shortest path in R? with polygonal
obstacles; however, the same problem in R? with polyhedral obstacles is N P-hard but no proof
known showing the latter is in class N P.

