NP-hardness and pseudo-polynomial time algorithms R. Inkulu

* Let A be an algorithm to a problem II. For any instance I of II, let be(I) be the binary encoding of
I. Let |I| be the length of be([I), that is |I| = |be(I)| (ex. the length of a 0-1 knapsack instance is
O(n((1g max; v;) + (g max; w;)) + 1lg W)). Also, let 5 be the length of unary representation of a max-
imum number in I (ex. W in a 0-1 knapsack instance), or 0 if no numbers occur in /. Significantly, the
length of unary encoding of 3 is not necessarily bounded by poly(|be(3)]).

In the time complexity of A',

if the number of objects in [is in the exponent, then A is called an exponential time algorithm (ex.

naive O(2"™) time algo for vertex cover),

- if |I] is not in the exponent and /3 occurs in the base, noting that 3 = 285, A is called a pseudo-
polynomial time algorithm (ex. naive O(n) time algorithm for determining whether the given positive integer n is a prime; or
the dynamic programming based algorithm for 0-1 knapsack, which takes O(TWn) = O(2!8 " n) time),

- if both |I| and lg 8 are not in the exponent, but lg 8 does occur in the base, then A is a weakly-
polynomial time algorithm (ex. computing ged(a, b) for a > b > 1 in O(lg b) time)

- if 5 does not appear at all and the number n of objects in I appears in the base, then A is called a
strongly-polynomial time algorithm, and (ex. O(n lg n) time algorithm to merge sort . numbers)

- if the time complexity of A is 2(87)° for ¢ > 1, then A is called a quasi-polynomial time algorithm

(such algorithms are considered better to exponential time algorithms but not as efficient as polynomial time algorithms).

* It is desirable to have a strongly-polynomial time algorithm. Both the strongly- and weakly-polynomial
time algorithms are polynomial time algorithms. However, if the algorithm’s time complexity is a weakly-
polynomial, then that algorithm is said to be a weakly-polynomial time algorithm; otherwise, we simply
say that it is a polynomial time algorithm. Further, both the pseudo-polynomial time and exponential
time algorithms are exponential in time complexity since the input complexity is in the exponent of time
complexity; significantly, a pseudo-polynomial time algorithm takes exponential time when the input
instance has large numbers.

* Assuming P # NP, no NP-hard problem is solvable in polynomial time. However, the NP-hardness
of a problem II does not necessarily rule out the possibility of solving it with a pseudo-polynomial time
algorithm. If IT is NP-hard and IT does not have numerical parameters, then II cannot be solved by
a pseudo-polynomial time algorithm unless P = N P. Thus, assuming P # N P, only NP-complete
problems that are potential candidates for being solved by pseudo-polynomial time algorithms are those
problems that have numerical parameters. Some of the examples for numerical problems include partition,
0-1 knapsack, integer partition, bin packing, and TSP. While other problems being numerical problems is
obvious, the TSP problem is a numerical since the edge weights are numerical parameters. On the other
hand, the CLIQUE problem may not be considered as a numerical problem since the clique size k in any
reasonable instance is upper bounded by n.

From the above definitions, an algorithm that solves a problem II is called a pseudo-polynomial time
algorithm for II if its time complexity is O(poly(|I|,3)). For any decision problem II, let IT, denote

"Though we use lg n bits to label/index any object among n objects I has, in the word-RAM model of computation, usually,
any of these labels or references to them fit in a word and hence occupy O(1) space.

http://www.iitg.ac.in/rinkulu/

the subproblem of II obtained by restricting IT to only those instances I that satisfy 5 < poly(|I|). (To
remind, |I| is |be(I)|.) The problem II is called strongly NP-hard if I1,, is NP-hard.

Lemma. Unless P = N P, there can be no pseudo-polynomial time algorithm for any strongly NP-hard
problem.

Proof. For the sake of contradiction, assume a pseudo-polynomial time algorithm A exists for a strongly
NP-hard problem II. That is, IL, is NP-hard. Given any input string w, first check whether w encodes an
instance /I of II satisfying 3 < poly(|I|). (That is, we check whether w is an instance of II,,.) If so, apply
Ato I. For any I € II,, the A takes poly(|I|,5 = O(poly(|I|))) = poly(|I|) time, contradicting the
supposition P #= NP, O

In other words, a decision problem II is strongly NP-hard if every problem in NP can be reduced to II
in polynomial time such that the length of every number in unary representation in the reduced instance
f(w) is at most a polynomial in the length of the binary encoding of w. That is, to prove II is strongly
NP-hard, one needs to give a polynomial time reduction from any strongly NP-hard problem to II,. One
such strongly NP-hard numerical problem is binpacking, thanks to polynomial time reduction from 3-
dimensional matching. The TSP is a strongly NP-hard problem since it remains NP-hard even if each
number involved in it is upper bounded by the number of nodes in the graph. (And, even if one considers
the CLIQUE problem as a numerical problem due to number % in any instance, this problem is strongly
NP-hard since it remains NP-hard even if k in the instance is upper bounded by the number of nodes in
the graph.) A decision problem II is strongly NP-complete if 11 belongs to NP and II is strongly NP-hard.

* An NP-hard problem that is not strongly NP-hard is said to be weakly NP-hard. Any weakly NP-hard
problem can have a pseudo-polynomial time algorithm without disobeying P # NP. The example
weakly NP-hard numerical problems include 0-1 knapsack, integer knapsack, subsetsum, and partition. A
decision problem II is weakly NP-complete if 11 belongs to NP and II is weakly NP-hard.

References:
”Strong” NP-Completeness Results: Motivation, Examples, and Implications by M. R. Garey and D. S.
Johnson, JACM °78, Vol 25, No 3, pp 499-508.

