
NP-hardness and pseudo-polynomial time algorithms R. Inkulu

• Let A be an algorithm to a problem Π. For any instance I of Π, let be(I) be the binary encoding of
I . Let |I| be the length of be(I), that is |I| = |be(I)| (ex. the length of a 0-1 knapsack instance is
O(n((lgmaxi vi) + (lgmaxiwi)) + lgW)). Also, let β be the length of unary representation of a max-
imum number in I (ex. W in a 0-1 knapsack instance), or 0 if no numbers occur in I . Significantly, the
length of unary encoding of β is not necessarily bounded by poly(|be(β)|).

In the time complexity of A1,

- if the number of objects in I is in the exponent, then A is called an exponential time algorithm (ex.

naive O(2n) time algo for vertex cover),

- if |I| is not in the exponent and β occurs in the base, noting that β = 2lg β , A is called a pseudo-
polynomial time algorithm (ex. naive O(n) time algorithm for determining whether the given positive integer n is a prime; or

the dynamic programming based algorithm for 0-1 knapsack, which takes O(Wn) = O(2lgWn) time),

- if both |I| and lg β are not in the exponent, but lg β does occur in the base, then A is a weakly-
polynomial time algorithm (ex. computing gcd(a, b) for a > b ≥ 1 in O(lg b) time)

- if β does not appear at all and the number n of objects in I appears in the base, then A is called a
strongly-polynomial time algorithm, and (ex. O(n lgn) time algorithm to merge sort n numbers)

- if the time complexity of A is 2(lgn)
c

for c > 1, then A is called a quasi-polynomial time algorithm
(such algorithms are considered better to exponential time algorithms but not as efficient as polynomial time algorithms).

• It is desirable to have a strongly-polynomial time algorithm. Both the strongly- and weakly-polynomial
time algorithms are polynomial time algorithms. However, if the algorithm’s time complexity is a weakly-
polynomial, then that algorithm is said to be a weakly-polynomial time algorithm; otherwise, we simply
say that it is a polynomial time algorithm. Further, both the pseudo-polynomial time and exponential
time algorithms are exponential in time complexity since the input complexity is in the exponent of time
complexity; significantly, a pseudo-polynomial time algorithm takes exponential time when the input
instance has large numbers.

• Assuming P ̸= NP , no NP-hard problem is solvable in polynomial time. However, the NP-hardness
of a problem Π does not necessarily rule out the possibility of solving it with a pseudo-polynomial time
algorithm. If Π is NP-hard and Π does not have numerical parameters, then Π cannot be solved by
a pseudo-polynomial time algorithm unless P = NP . Thus, assuming P ̸= NP , only NP-complete
problems that are potential candidates for being solved by pseudo-polynomial time algorithms are those
problems that have numerical parameters. Some of the examples for numerical problems include partition,
0-1 knapsack, integer partition, bin packing, and TSP. While other problems being numerical problems is
obvious, the TSP problem is a numerical since the edge weights are numerical parameters. On the other
hand, the CLIQUE problem may not be considered as a numerical problem since the clique size k in any
reasonable instance is upper bounded by n.

From the above definitions, an algorithm that solves a problem Π is called a pseudo-polynomial time
algorithm for Π if its time complexity is O(poly(|I|, β)). For any decision problem Π, let Πp denote

1Though we use lgn bits to label/index any object among n objects I has, in the word-RAM model of computation, usually,
any of these labels or references to them fit in a word and hence occupy O(1) space.

http://www.iitg.ac.in/rinkulu/

the subproblem of Π obtained by restricting Π to only those instances I that satisfy β ≤ poly(|I|). (To
remind, |I| is |be(I)|.) The problem Π is called strongly NP-hard if Πp is NP-hard.

Lemma. Unless P = NP , there can be no pseudo-polynomial time algorithm for any strongly NP-hard
problem.

Proof. For the sake of contradiction, assume a pseudo-polynomial time algorithm A exists for a strongly
NP-hard problem Π. That is, Πp is NP-hard. Given any input string w, first check whether w encodes an
instance I of Π satisfying β ≤ poly(|I|). (That is, we check whether w is an instance of Πp.) If so, apply
A to I . For any I ∈ Πp, the A takes poly(|I|, β = O(poly(|I|))) = poly(|I|) time, contradicting the
supposition P ̸= NP .

In other words, a decision problem Π is strongly NP-hard if every problem in NP can be reduced to Π
in polynomial time such that the length of every number in unary representation in the reduced instance
f(w) is at most a polynomial in the length of the binary encoding of w. That is, to prove Π is strongly
NP-hard, one needs to give a polynomial time reduction from any strongly NP-hard problem to Πp. One
such strongly NP-hard numerical problem is binpacking, thanks to polynomial time reduction from 3-
dimensional matching. The TSP is a strongly NP-hard problem since it remains NP-hard even if each
number involved in it is upper bounded by the number of nodes in the graph. (And, even if one considers
the CLIQUE problem as a numerical problem due to number k in any instance, this problem is strongly
NP-hard since it remains NP-hard even if k in the instance is upper bounded by the number of nodes in
the graph.) A decision problem Π is strongly NP-complete if Π belongs to NP and Π is strongly NP-hard.

• An NP-hard problem that is not strongly NP-hard is said to be weakly NP-hard. Any weakly NP-hard
problem can have a pseudo-polynomial time algorithm without disobeying P ̸= NP . The example
weakly NP-hard numerical problems include 0-1 knapsack, integer knapsack, subsetsum, and partition. A
decision problem Π is weakly NP-complete if Π belongs to NP and Π is weakly NP-hard.

References:
”Strong” NP-Completeness Results: Motivation, Examples, and Implications by M. R. Garey and D. S.
Johnson, JACM ’78, Vol 25, No 3, pp 499-508.

