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The word “optimization” may be very familiar or may be quite new to 
you. 

……. but whether you know about optimization or not, you are using
optimization in many occasions of your day to day life …….

…………….Examples………………
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Are you using optimization?
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Optimization in real life
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Example

A farmer has 2400 m of fencing and wants to fence off a rectangular field that borders 

a straight river. He needs no fence along the river. What are the dimensions of the 

field that has the largest area?
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700700

400

1600

400

x

yy

RIVER

Maximize 𝑓 = 𝑥𝑦

Subject to 𝑔 𝑥, 𝑦 = 𝑥 + 2𝑦 = 2400
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A manufacturer needs to make a cylindrical can that will hold 1.5 liters of liquid.

Determine the dimensions of the can that will minimize the amount of material used in

its construction.

Constraint: πr2h = 1500

Minimize: A = 2πr2 + 2πrh

Example

Dimension is in cm

1.5 liters = 1500 𝑐𝑚3
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Objectives

Topology: Optimal connectivity of the 

structure

Minimum cost of material: optimal cross 

section of all the members

We will consider the second objective only

The design variables are the cross sectional area 

of the members, i.e. 𝐴1 to 𝐴7

Using symmetry of the structure 𝐴7 = 𝐴1, 𝐴6 = 𝐴2, 𝐴5 = 𝐴3

You have only four design variables, i.e., 𝐴1 to 𝐴4

Example
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Optimization formulation

Objective

One essential constraint is non-negativity of design variables, i.e.

𝐴1, 𝐴2, 𝐴3, 𝐴4 ≥ 0

Is it complete now?

What are the constraints?

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = 1.132𝐴1𝑙 + 2𝐴2𝑙 + 1.789𝐴3𝑙 + 1.2𝐴4𝑙
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First set of constraints Another constraint may be the 

minimization of deflection at C
Another constraint is buckling 

of compression members

Optimization formulation
Member Force Member Force

𝐴𝐵
−
𝑃

2
𝑐𝑠𝑐𝜃

𝐵𝐶
+
𝑃

2
𝑐𝑠𝑐𝛼

𝐴𝐶
+
𝑃

2
𝑐𝑜𝑡𝜃

𝐵𝐷
−
𝑃

2
𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼

𝑃𝑐𝑠𝑐𝜃

2𝐴1
≤ 𝑆𝑦𝑐

𝑃𝑐𝑜𝑡𝜃

2𝐴2
≤ 𝑆𝑦𝑡

𝑃𝑐𝑠𝑐𝛼

2𝐴3
≤ 𝑆𝑦𝑡

𝑃

2𝐴4
𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼 ≤ 𝑆𝑦𝑐

𝑃

2𝑠𝑖𝑛𝜃
≤

𝜋𝐸𝐴1
2

1.281𝑙2

𝑃

2
𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼 ≤

𝜋𝐸𝐴4
2

5.76𝑙2

𝑃𝑙

𝐸

0.566

𝐴1
+
0.500

𝐴2
+
2.236

𝐴3
+
2.700

𝐴4
≤ 𝛿𝑚𝑎𝑥
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Optimization formulation

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓 = 1.132𝐴1𝑙 + 2𝐴2𝑙 + 1.789𝐴3𝑙 + 1.2𝐴4𝑙

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑆𝑦𝑐 −
𝑃𝑐𝑠𝑐𝜃

2𝐴1
≥ 0

𝑆𝑦𝑡 −
𝑃𝑐𝑜𝑡𝜃

2𝐴2
≥ 0

𝑆𝑦𝑡 −
𝑃𝑐𝑠𝑐𝛼

2𝐴3
≥ 0

𝑆𝑦𝑐 −
𝑃

2𝐴4
𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼 ≥ 0

𝜋𝐸𝐴1
2

1.281𝑙2
−

𝑃

2𝑠𝑖𝑛𝜃
≥ 0

𝜋𝐸𝐴4
2

5.76𝑙2
−
𝑃

2
𝑐𝑜𝑡𝜃 + 𝑐𝑜𝑡𝛼 ≥ 0

𝛿𝑚𝑎𝑥 −
𝑃𝑙

𝐸

0.566

𝐴1
+
0.500

𝐴2
+
2.236

𝐴3
+
2.700

𝐴4
≥ 0

10 × 10−6 ≤ 𝐴1, 𝐴2, 𝐴3, 𝐴4 ≤ 10 × 10+6
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A possible solution: A B E D C

A

B

C

D

E

Another solution: A B C D E

Traveling salesman problem
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traveling salesman problem

Traveling 

salesman 

problem

Traveling salesman problem
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What is Optimization?

• Optimization is the act of obtaining the best result under a given
circumstances.

• Optimization is the mathematical discipline which is concerned with
finding the maxima and minima of functions, possibly subject to
constraints.

9/13/2024 13



Introduction to optimization
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How to find out the minimum of the function 

𝑓′ = 2 × 𝑥 − 5 = 0
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𝑓 = 25 − 𝑥2 Equation of the line

𝑓′ = 2𝑥 = 0

𝑥∗ = 0 Optimal solution
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Introduction to optimization

𝑓 𝑥, 𝑦 = − 𝑥2 + 𝑦2 + 4

Equation of the surface 

In this case, we can obtain the optimal 

solution by taking derivatives with respect 

to variable 𝑥 and 𝑦 and equating them to 

zero 

𝜕𝑓

𝜕𝑥
= −2𝑥 = 0 ⇒ 𝑥∗= 0

𝜕𝑓

𝜕𝑦
= −2𝑦 = 0 ⇒ 𝑦∗= 0Optimal solution is 0,0



Single variable optimization

Objective function is defined as

Minimization/Maximization f(x)

9/13/2024 16
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Single variable optimization

Stationary points

For a continuous and differentiable function 𝑓(𝑥), a stationary point 𝑥∗is a
point at which the slope of the function is zero, i.e.𝑓′ 𝑥 = 0 at 𝑥 = 𝑥∗,

9/13/2024 17

Minima Maxima Inflection point
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Global minimum and maximum 
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A function is said to have a global or absolute

maximum at 𝑥 = 𝑥∗ if 𝑓(𝑥∗) ≥ 𝑓(𝑥) for all 𝑥 in

the domain over which 𝑓(𝑥) is defined.

A function is said to have a global or absolute 

minimum at 𝑥 = 𝑥∗ if 𝑓(𝑥∗) ≤ 𝑓(𝑥) for all 𝑥 in the 

domain over which 𝑓(𝑥) is defined.
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Global optima
Local optima

Local optima

Local optima

Local optima

f

X 

Introduction to optimization
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Necessary and sufficient conditions for optimality
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Necessary condition 

If a function 𝑓(𝑥) is defined in the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and has a relative minimum 

at 𝑥 = 𝑥∗, Where 𝑎 ≤ 𝑥∗ ≤ 𝑏 and if 𝑓/ 𝑥 exists as a finite number at 𝑥 = 𝑥∗, 
then 𝑓/ 𝑥∗ = 0

Proof

𝑓/ 𝑥∗ = lim
ℎ→0

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ

Since 𝑥∗ is a relative minimum                     𝑓(𝑥∗) ≤ 𝑓 𝑥∗ + ℎ

For all values of ℎ sufficiently close to zero, hence

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ
≥ 0

𝑓 𝑥∗ + ℎ − 𝑓(𝑥∗)

ℎ
≤ 0

if ℎ ≥ 0

if ℎ ≤ 0
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Thus

𝑓/ 𝑥∗ ≥ 0 If ℎ tends to zero through +ve value  

𝑓/ 𝑥∗ ≤ 0 If ℎ tends to zero through -ve value  

Thus only way to satisfy both the conditions is to have 

𝒇/ 𝒙∗ = 𝟎
Note:

• This theorem can be proved if 𝑥∗ is a relative maximum

• Derivative must exist at 𝑥∗

• The theorem does not say what happens if a minimum or maximum occurs at an end point of 

the interval of the function

• It may be an inflection point also.   

Necessary and sufficient conditions for optimality
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Sufficient conditions for optimality

Sufficient condition

Suppose at point 𝑥∗, the first derivative is zero and first nonzero higher 
derivative is denoted by 𝑛, then

1. If 𝑛 is odd, 𝑥∗ is an inflection point

2. If 𝑛 is even, 𝑥∗ is a local optimum
✓ If the derivative is positive, 𝑥∗ is a local minimum

✓ If the derivative is negative, 𝑥∗ is a local maximum

9/13/2024 22

𝑓′ 𝑥∗ = 0

𝑓′′ 𝑥∗ = 0

𝑓3 𝑥∗ = 0

𝑓4 𝑥∗ = 0

𝑓𝑛 𝑥∗ ≠ 0
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Sufficient conditions for optimality

Proof Apply Taylor’s series

𝑓 𝑥∗ + ℎ = 𝑓 𝑥∗ + ℎ𝑓′ 𝑥∗ +
ℎ2

2!
𝑓′′ 𝑥∗ +⋯+

ℎ𝑛−1

𝑛 − 1 !
𝑓𝑛−1 𝑥∗ +

ℎ𝑛

𝑛!
𝑓𝑛 𝑥∗

Since 𝑓′ 𝑥∗ = 𝑓′′ 𝑥∗ = ⋯ = 𝑓𝑛−1 𝑥∗ = 0

𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ =
ℎ𝑛

𝑛!
𝑓𝑛 𝑥∗

When 𝑛 is even    
ℎ𝑛

𝑛!
≥ 0

Thus if  𝑓𝑛 𝑥∗ is positive 𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ is positive Hence it is  local minimum

Thus if  𝑓𝑛 𝑥∗ negative 𝑓 𝑥∗ + ℎ − 𝑓 𝑥∗ is negative Hence it is  local maximum

When 𝑛 is odd, 
ℎ𝑛

𝑛!
changes sign with the change in the sign of ℎ.

Hence it is an inflection point
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𝑓 𝑥 = 𝑥3 − 10𝑥 − 2𝑥2 − 10

Sufficient conditions for optimality

Take an example

𝑓′ 𝑥 = 3𝑥2 − 10 − 4𝑥 = 0

Solving for 𝑥 𝑥∗ = 2.61 𝑎𝑛𝑑 − 1.28 These two points are stationary points

Apply necessary condition

Apply sufficient condition 𝑓′′ 𝑥 = 6𝑥 − 4

𝑓′′ 2.61 = 11.66 positive and n is even

𝑥∗ = 2.61 is a minimum point

𝑓′′ −1.28 = −11.68 negative and n is even

𝑥∗ = −1.28 is a maximum point
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Multivariable optimization without constraints

Minimize 𝑓(𝑋) Where 𝑋 =

𝑥1
𝑥2
⋮
𝑥𝑛

Necessary condition for optimality 

If 𝑓(𝑋) has an extreme point (maximum or minimum) at 𝑋 = 𝑋∗ and if the first partial 

Derivatives of 𝑓 𝑋 exists at 𝑋∗, then 

𝜕𝑓 𝑋∗

𝜕𝑥1
=
𝜕𝑓 𝑋∗

𝜕𝑥2
= ⋯ =

𝜕𝑓 𝑋∗

𝜕𝑥𝑛
= 0
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Sufficient condition for optimality 

The sufficient condition for a stationary point 𝑋∗ to be an extreme point is that the 

matrix of second partial derivatives of 𝑓(𝑋) evaluated at 𝑋∗ is 

(1) positive definite when 𝑋∗ is a relative minimum

(2) negative definite when 𝑋∗ is a relative maximum

(3) neither positive nor negative definite when 𝑋∗ is neither a minimum nor a maximum

Proof Taylor series of two variable function

𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 = 𝑓 𝑥, 𝑦 + ∆𝑥
𝜕𝑓

𝜕𝑥
+ ∆𝑦

𝜕𝑓

𝜕𝑦
+
1

2!
∆𝑥2

𝜕2𝑓

𝜕𝑥2
+ 2∆𝑥∆𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦
+ ∆𝑦2

𝜕2𝑓

𝜕𝑦2
+⋯

𝑓 𝑥 + ∆𝑥, 𝑦 + ∆𝑦 = 𝑓 𝑥, 𝑦 + ∆𝑥 ∆𝑦

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

+
1

2!
∆𝑥 ∆𝑦

𝜕2𝑓

𝜕𝑥2
𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑥𝜕𝑦

𝜕2𝑓

𝜕𝑦2

∆𝑥
∆𝑦

+⋯

Multivariable optimization without constraints
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𝑓 𝑋∗ + ℎ = 𝑓 𝑋∗ + ℎ𝑇𝛻𝑓 𝑋∗ +
1

2!
ℎ𝑇𝑯ℎ +⋯

Since 𝑋∗ is a stationary point, the necessary 

condition gives that 𝛻𝑓 𝑋∗ = 0

Thus

𝑓 𝑋∗ + ℎ − 𝑓 𝑋∗ =
1

2!
ℎ𝑇𝑯ℎ +⋯

Now, 𝑋∗ will be a minima, if ℎ𝑇𝑯ℎ is positive  

𝑋∗ will be a maxima, if ℎ𝑇𝑯ℎ is negative  

ℎ𝑇𝑯ℎ will be positive if 𝑯 is a positive definite matrix 

ℎ𝑇𝐻ℎ will be negative if 𝑯 is a negative definite matrix 

A matrix 𝐻 will be positive definite if all the 

eigenvalues are positive, i.e. all the 𝜆 values are 

positive which satisfies the following equation  

𝑨 − 𝜆𝑰 = 0

Multivariable optimization without constraints

𝐴1 = 𝑎11

𝐴2 =
𝑎11 𝑎12
𝑎21 𝑎22

𝐴3 =

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

𝐴𝑛 =

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23

𝑎14 ⋯ 𝑎1𝑛
𝑎24 ⋯ 𝑎2𝑛

⋮ ⋮ ⋮
𝑎𝑛1 𝑎𝑛2 𝑎𝑛3

⋮ ⋯ ⋮
𝑎𝑛4 ⋯ 𝑎𝑛𝑛

✓ A matrix 𝑨 will be positive definite if any only if all the 

values 𝐴1, 𝐴2, 𝐴3, …, 𝐴𝑛 are positive. 

✓ The matrix will be negative definite is and only if the 

sign of 𝐴𝑗 is −1 𝑗 for 𝑗 = 1, 2, 3, … , 𝑛

Another test  
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Unimodal and duality principle

Minimization 𝑓 𝑥 = Maximization −𝑓 𝑥

Optimal solution 𝑥∗ = 0

Optimal solution 𝑥∗ = 0
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