Line Search Methods

Prof. (Dr.) Rajib Kumar Bhattacharjya

Professor, Department of Civil Engineering Indian Institute of Technology Guwahati, India Room No. 005, M Block Email: <u>rkbc@iitg.ernet.in</u>, Ph. No 2428

Search Methods

Step 1: A crude technique is used to find the lower and upper bound of the minimum

Step 2: A sophisticated method is used to obtain the optimal solution using the lower and upper bound obtained in step 1

Bracketing method

- ✓ Exhaustive search method
- ✓ Bounding phase method

а

Search Methods

a $x_1 x_2 x_3$

Exhaustive search method

Algorithm

Step 1

✓ Take $x_1 = a$, ✓ $\Delta x = \frac{(b-a)}{n}$, *n* is the number of intermediate points.

✓ Set
$$x_2 = x_1 + \Delta x$$
 and $x_3 = x_2 + \Delta x$

Step 2

- ✓ If $f(x_1) \ge f(x_2) \le f(x_3)$, the minimum points lies between x_1 and x_3 . Terminate
- ✓ Else $x_1 = x_2, x_2 = x_3, x_3 = x_2 + \Delta x$. Go to step 3

Step 3

- ✓ Is $x_3 < b$? If yes, go to Step 2,
- ✓ Else no minimum point exists between *a* and *b*

Search Methods

Bounding phase method

Algorithm

Step 1

✓ Take an initial guess x_0 and an increment ∆ ✓ Set n = 0

Step 2

- ✓ If $f(x_0 |\Delta|) \ge f(x_0) \ge f(x_0 + |\Delta|)$, then ∆ is positive.
- ✓ Else If $f(x_0 |\Delta|) \le f(x_0) \le f(x_0 + |\Delta|)$, then ∆ is negative.
- ✓ Else go to step 1

Step 3

 \checkmark Set $x_{n+1} = x_n + 2^n \Delta$

Step 4

- ✓ If $f(x_{n+1}) < f(x_n)$, set n = n + 1 and go to step 3
- ✓ Else minimum is between x_{n-1} and x_{n+1}
- ✓ Terminate