Prof. (Dr.) Rajib Kumar Bhattacharjya

Professor, Department of Civil Engineering Indian Institute of Technology Guwahati, India

Room No. 005, M Block

Email: rkbc@iitg.ernet.in, Ph. No 2428

Ans: a

For the unimodal function $if f(x_2) > f(x_1)$

Optimum is not there between

- a. Between $[a, x_1]$
- b. Between $[x_1, x_2]$
- c. Between $[x_2, b]$
- d. Between [a, b]

Ans: c

For the unimodal function $if f(x_1) = f(x_2)$

Optimum is not there between

- a. Between $[a, x_1]$
- b. Between $[x_1, x_2]$
- c. Between $[x_2, b]$
- d. Between [a, b]

Ans: a, c

$$if f(x_1) < f(x_m)$$

$$if f(x_2) < f(x_m)$$

Golden ratio 0.618=1/1.618

Golden Section Search Method

Golden Section Search Method

Apply region elimination rules
Suppose

$$f(x_1) > f(x_2)$$

Golden Section Search Method

Apply region elimination rules
Suppose

$$f(x_1) < f(x_2)$$

Golden Section Search Method

$$c = a + \tau(b - a) \tag{1}$$

$$d = b - \tau(b - a) \tag{2}$$

If
$$f(d) < f(c)$$

$$d = a + \tau(c - a) \tag{3}$$

Putting (1) in (3), we have

$$d = a + \tau(a + \tau(b - a) - a)$$

$$d = a + \tau^2(b - a) \tag{4}$$

Equating (4) and (2), we have

$$b - \tau(b - a) = a + \tau^{2}(b - a)$$

 $\tau^{2} + \tau - 1 = 0$ Solving τ =0.618, -1.618

Golden Section Search Method

0.618 is the golden

QUIZ

- 1. If f(x) is an unimodal convex function in the interval [a,b], then $f'(a) \times f'(b)$ is
- a) Positive
- b) Negative
- c) It may be negative or may be positive
- d) None of the above
- 2. For the same function, take any point c between [a,b]. If f'(c) is less than 0, then minimum does not lie in
- a) [a, c]
- b) [*c*, *b*]
- c) [a,b]
- d) None of the above
- 2. For the same function, take any point c between [a,b]. If f'(c) is greater than 0, then minimum does not lie in
- a) [a, c]
- b) [c,b]
- c) [a, b]
- d) None of the above

Bisection method

Take a point
$$z = \frac{a+b}{2}$$

iff'(z) < 0 then area between [a, z] will be eliminated

iff'(z) > 0 then area between [z, b] will be eliminated

Disadvantage

Magnitude of the derivatives is not considered

f(x) x_1 \boldsymbol{Z} x_2

Bisection method

Apply region elimination technique In this case f'(z) > 0

then area between $[z, x_2]$ will be eliminated

Considering similar triangle

$$\frac{f'(x_2)}{x_2 - z} = \frac{f'(x_2) - f'(x_1)}{x_2 - x_1}$$

$$z = x_2 - \frac{f'(x_2)}{\frac{f'(x_2) - f'(x_1)}{x_2 - x_1}}$$

Newton-Raphson method

$$f'(x_n) = \frac{f(x_n) - f(x_{n+1})}{x_n - x_{n+1}}$$

Rearranging and putting $f(x_{n+1}) = 0$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

$$x_{n+2} = x_{n+1} - \frac{f(x_{n+1})}{f'(x_{n+1})}$$

Continue iteration

Newton-Raphson method

