Quadratic approximation

Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati

$$f(x) = 2x^4 - x^3 + 5x^2 - 12x + 1$$

$$f'(x) = 8x^3 - 3x^2 + 10x - 12 = 0$$

Solving for x

$$x^* = 0.8831$$
 and $f(x^*) = -5.1702$

$$f(x) = 2x^4 - x^3 + 5x^2 - 12x + 1$$

Quadratic approximation of the function at x_o can be written as

$$f(x) = f(x_o) + f/(x_o)(x - x_o) + 0.5*f^{//}(x_o)(x - x_o)^2$$

Approximate function for $x_o = 0$

Now we can minimize the function

Minimize
$$f/(x_o)(x - x_o) + 0.5*f//(x_o)(x - x_o)^2$$

Solution is

$$x^* = 1.2$$
 and $f(x^*) = -3.7808$ and $f'(x^*) = 9.5040$

This is the solution of the approximate function: First trial

$$f(x) = 2x^4 - x^3 + 5x^2 - 12x + 1$$

Quadratic approximation of the function at x_o can be written as

$$f(x) = f(x_o) + f/(x_o)(x - x_o) + 0.5*f^{//}(x_o)(x - x_o)^2$$

Approximate function for $x_o = 1.2$

Now we can minimize the function

Minimize
$$f/(x_o)(x - x_o) + 0.5*f//(x_o)(x - x_o)^2$$

Solution is

$$x^* = 0.9456, f(x^*) = -5.1229$$
 and $f'(x^*) = 1.5377$

This is the solution of the approximate function: Second trial

$$f(x) = 2x^4 - x^3 + 5x^2 - 12x + 1$$

Quadratic approximation of the function at x_o can be written as

$$f(x) = f(x_o) + f'(x_o)(x - x_o) + 0.5*f'/(x_o)(x - x_o)^2$$

Approximate function for $x_o = 0.9456$

Now we can minimize the function

Minimize
$$f/(x_o)(x - x_o) + 0.5*f//(x_o)(x - x_o)^2$$

Solution is

$$x^* = 0.8864$$
 and $f(x^*) = -5.1701$ and $f'(x^*) = 0.0785$

This is the solution of the approximate function: Third trial

STOP

ITERATION

$$f(x) = 2x^4 - x^3 + 5x^2 - 12x + 1$$

Quadratic approximation of the function at x_o can be written as

$$f(x) = f(x_o) + f/(x_o)(x - x_o) + 0.5*f//(x_o)(x - x_o)^2$$

Approximate function for $x_o = 0.8864$

Now we can minimize the function

Minimize
$$f/(x_o)(x - x_o) + 0.5*f//(x_o)(x - x_o)^2$$

Solution is

$$x^* = 0.8831$$
 and $f(x^*) = -5.1702$ and $f'(x^*) = 0.00099$

This is the solution of the approximate

function: Fourth trial

Gradient is negligible

Now take an example of multivariable problem

Minimize
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$

Minimize
$$f(x_1, x_2) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 - 7)^2$$
 $x_0 = [2\ 2]^T$

The quadratic approximation of the function at $x_o = [2 \ 2]^T$ can be written as

$$f(X) = f(X_o) + (X - X_o)\nabla f(X_o)^T + \frac{1}{2}(X - X_o)H(X_o)(X - X_o)^T$$

For first approximation

Minimize
$$f(X) = (X - X_o)\nabla f(X_o)^T + \frac{1}{2}(X - X_o)H(X_o)(X - X_o)^T$$
Or,
$$f(X) = \begin{bmatrix} x_1 - 2 & x_2 - 2 \end{bmatrix} \begin{bmatrix} -42 \\ -18 \end{bmatrix} + \frac{1}{2}[x_1 - 2 & x_2 - 2] \begin{bmatrix} 14 & 16 \\ 16 & 30 \end{bmatrix} \begin{bmatrix} x_1 - 2 \\ x_2 - 2 \end{bmatrix}$$

Solution

Trial	X value	Gradient	
1	7.9268 -0.5610	-42 -18	_
2	5.7945 -4.4555	1628 99	
3	4.4415 -3.1670	457 -296	3
4	3.7952 -2.3927	113 -83	2
5	3.6086 -1.9928	20 -22	
6	3.5858 -1.8623	1.5811 -4.5637	
7	3.5844 -1.8483	0.0457 -0.4106	
8	3.5844 -1.8481	-0.0042 -0.0053	-2
9	3.5844 -1.8481	-0.0028 0.0006	-3
			-4
		BIII	-5 -4 -3 -2 -1 0 1 2 3 4 5

Optimal solution

Gradient is almost negligible

The River Brattachar B