

Prof (Dr.) Rajib Kumar Bhattacharjya

Department of Civil Engineering INDIAN INSTITUTE OF TECHNOLOGY, GUWAHATI GUWAHATI-781039, ASSAM, INDIA

Multivariable problem with inequality constraints

Minimize f(X) Where $X = [x_1, x_2, x_3, ..., x_n]^T$

Subject to $g_j(X) \le 0$ j = 1, 2, 3, ..., m

We can write $g_j(X) + y_j^2 = 0$

Thus the problem can be written as

Minimize f(X)Subject to $G_j(X,Y) = g_j(X) + y_j^2 = 0$ j = 1,2,3,...,m

Where $Y = [y_1, y_2, y_3, ..., y_m]^T$

Multivariable problem with inequality constraints

Minimize f(X) Where $X = [x_1, x_2, x_3, ..., x_n]^T$

Subject to $G_j(X, Y) = g_j(X) + y_j^2 = 0$ j = 1, 2, 3, ..., m

The Lagrange function can be written as

$$L(X, Y, \lambda) = f(X) + \sum_{j=1}^{m} \lambda_j G_j(X, Y)$$

The necessary conditions of optimality can be written as

$$\frac{\partial L(X,Y,\lambda)}{\partial x_i} = \frac{\partial f(X)}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j(X)}{\partial x_i} = 0 \qquad i = 1,2,3,\dots,n$$
$$\frac{\partial L(X,Y,\lambda)}{\partial \lambda_j} = G_j(X,Y) = g_j(X) + y_j^2 = 0 \qquad j = 1,2,3,\dots,m$$

 $\frac{\partial L(X,Y,\lambda)}{\partial y_j} = 2\lambda_j y_j = 0 \qquad \qquad j = 1,2,3,\dots,m$

Multivariable problem with inequality constraints

From equation $\frac{\partial L(X,Y,\lambda)}{\partial y_j} = 2\lambda_j y_j = 0$ Either $\lambda_j = 0$ Or, $y_j = 0$ If $\lambda_j = 0$, the constraint is not active, hence can be ignored

If $y_j = 0$, the constraint is active, hence have to consider

Now, consider all the active constraints, Say set J_1 is the active constraints And set J_2 is the inactive constraints

The optimality condition can be written as

$$\begin{aligned} \frac{\partial f(X)}{\partial x_i} + \sum_{j \in J_1} \lambda_j \frac{\partial g_j(X)}{\partial x_i} &= 0 \qquad i = 1, 2, 3, \dots, n \\ g_j(X) &= 0 \qquad \qquad j \in J_1 \\ g_j(X) + y_j^2 &= 0 \qquad \qquad j \in J_2 \end{aligned}$$

Multivariable problem with inequality constraints

$$-\frac{\partial f}{\partial x_i} = \lambda_1 \frac{\partial g_1}{\partial x_i} + \lambda_2 \frac{\partial g_2}{\partial x_i} + \lambda_3 \frac{\partial g_3}{\partial x_i} + \dots + \lambda_p \frac{\partial g_p}{\partial x_i}$$

$$-\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2 + \lambda_3 \nabla g_3 + \dots + \lambda_p \nabla g_p$$

This indicates that negative of the gradient of the objective function can be expressed as a linear combination of the gradient of the active constraints at optimal point.

 $-\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$

Let *S* be a feasible direction, then we can write

 $-S^T \nabla f = \lambda_1 S^T \nabla g_1 + \lambda_2 S^T \nabla g_2$

Since *S* is a feasible direction

$$S^T \nabla g_1 < 0$$
 and $S^T \nabla g_2 < 0$

 $i = 1, 2, 3, \dots, n$

 $\nabla f = \begin{cases} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{cases} \qquad \nabla g_j = \begin{cases} \frac{\partial g_j}{\partial x_1} \\ \frac{\partial g_j}{\partial x_2} \\ \vdots \\ \frac{\partial g_j}{\partial x_2} \end{cases}$

If $\lambda_1, \lambda_2 > 0$ Then the term $S^T \nabla f$ is +ve

This indicates that *S* is a direction of increasing function value

Thus we can conclude that if $\lambda_1, \lambda_2 > 0$, we will not get any better solution than the current solution

$$-S^T \nabla f = \lambda_1 S^T \nabla g_1 + \lambda_2 S^T \nabla g_2$$

Since *S* is a feasible direction $S^T \nabla g_1 < 0$ and $S^T \nabla g_2 < 0$

If $\lambda_1, \lambda_2 > 0$ Then the term $S^T \nabla f$ is +ve

This indicates that *S* is a direction of increasing function value

Thus we can conclude that if $\lambda_1, \lambda_2 > 0$, we will not get any better solution than the current solution

Multivariable problem with inequality constraints The necessary conditions to be satisfied at constrained minimum points *X*^{*} are

$$\frac{\partial f(X)}{\partial x_i} + \sum_{j \in J_1} \lambda_j \frac{\partial g_j(X)}{\partial x_i} = 0 \qquad i = 1, 2, 3, ..., n$$
$$\lambda_j \ge 0 \qquad j \in J_1$$

These conditions are called **Kuhn-Tucker conditions**, the necessary conditions to be satisfied at a relative minimum of f(X).

These conditions are in general not sufficient to ensure a relative minimum, However, in case of a convex problem, these conditions are the necessary and sufficient conditions for global minimum.

Multivariable problem with inequality constraints

If the set of active constraints are not known, the Kuhn-Tucker conditions can be stated as

$$\frac{\partial f(X)}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j(X)}{\partial x_i} = 0 \qquad i = 1, 2, 3, \dots, n$$
$$\lambda_j g_j = 0$$
$$g_j \le 0$$
$$\lambda_j \ge 0$$

Multivariable problem with equality and inequality constraints

For the problem
Minimizef(X)Where $X = [x_1, x_2, x_3, ..., x_n]^T$ Subject to $g_j(X) \le 0$ j = 1, 2, 3, ..., m $h_k(X) = 0$ k = 1, 2, 3, ..., p

The Kuhn-Tucker conditions can be written as

$$\frac{\partial f(X)}{\partial x_i} + \sum_{j=1}^m \lambda_j \frac{\partial g_j(X)}{\partial x_i} + \sum_{k=1}^p \beta_k \frac{\partial h_k(X)}{\partial x_i} = 0 \qquad i = 1, 2, 3, \dots, n$$

$\lambda_j g_j = 0$	j = 1, 2, 3,, m
$g_j \leq 0$	j = 1, 2, 3,, m
$h_k = 0$	$k = 1, 2, 3, \dots, p$
$\lambda_j \ge 0$	j = 1, 2, 3,, m

$$\begin{aligned} \text{Minimize } f(X) &= x_1^2 + 2x_2^2 + 3x_3^2 \\ \text{Subject to } g_1(X) &= x_1 - x_2 - 2x_3 \le 12 \\ g_2(X) &= x_1 + 2x_2 - 3x_3 \le 8 \end{aligned}$$