
MA224: Real Analysis
Assignment 1: Metric Spaces and Normed Linear Spaces

January–April 2026

1. For each statement below, determine whether it is true or false. Provide a brief justification.
(a) There exists a metric space having exactly 36 open sets.
(b) It is impossible to define a metric d on R such that only finitely many subsets of R are open

in (R, d).
(c) If A and B are open (closed) subsets of a normed vector space X, then A + B = {a + b :

a ∈ A, b ∈ B} is open (closed) in X.
(d) If A and B are closed subsets of [0,∞) (with the usual metric), then A + B is closed in

[0,∞).
(e) It is possible to define a metric d on R such that the sequence (1, 0, 1, 0, ...) converges in

(R, d).
(f) It is possible to define a metric d on R2 such that (( 1

n
, n
n+1

)) is not a Cauchy sequence in

(R2, d).
(g) It is possible to define a metric d on R2 such that in (R2, d), the sequence (( 1

n
, 0)) converges

but the sequence (( 1
n
, 1
n
)) does not converge.

(h) There exist two non-empty disjoint sets A and B in R such that inf{|x−y| : x ∈ A and y ∈
B} = 0.

(i) If (xn) is a sequence in a complete normed vector space X such that ∥xn+1 − xn∥ → 0 as
n → ∞, then (xn) must converge in X.

(j) If (fn) is a sequence in C[0, 1] such that |fn+1(x) − fn(x)| ≤ 1
n2 for all n ∈ N and for all

x ∈ [0, 1], then there must exist f ∈ C[0, 1] such that
1∫
0

|fn(x)− f(x)| dx → 0 as n → ∞.

(k) If (xn) is a Cauchy sequence in a normed vector space, then lim
n→∞

∥xn∥ must exist.

(l) {f ∈ C[0, 1] : ∥f∥1 ≤ 1} is a bounded subset of the normed vector space (C[0, 1], ∥ · ∥∞).
(m) There exists a set A ⊂ (R, u) such that δ (Ao ∪ {0}) = 0 but δ

(
(Ā)o

)
= 1, where δ stands

for diameter.
(n) For x, y ∈ ℓ∞, d(x, y) = min{1, lim supn→∞ |xn − yn|} defines a metric on ℓ∞.

(o) The sequence fn(t) = e−n2 sinπt converges uniformly to 0 on (0, 1).

2. For each of the following choices of X and d, determine whether (X, d) is a metric space.

(a) X = R and d(x, y) = |x−y|
1+|xy| for all x, y ∈ R.

(b) X = R and d(x, y) = min{
√

|x− y|, |x− y|2} for all x, y ∈ R.
(c) X = R and d(x, y) = |x− y|p for all x, y ∈ R (0 < p < 1).

(d) X = R and for all x, y ∈ R, d(x, y) =
{

1 + |x− y| if exactly one of x and y is positive,
|x− y| otherwise.

(e) X = R2 and d(x, y) = (|x1 − y1|+ |x2 − y2|
1
2 )

1
2 for all x = (x1, x2), y = (y1, y2) ∈ R2.

(f) X = Rn and d(x, y) = [(x1− y1)
2+ 1

2
(x2− y2)

2+ · · ·+ 1
n
(xn− yn)

2]
1
2 for all x = (x1, ..., xn),

y = (y1, ..., yn) ∈ Rn.

(g) X = C and for all z, w ∈ C, d(z, w) =
{

min{|z|+ |w|, |z − 1|+ |w − 1|} if z ̸= w,
0 if z = w.

(h) X = C and for all z, w ∈ C, d(z, w) =
{

|z − w| if z
|z| =

w
|w| ,

|z|+ |w| otherwise.

(i) X = C and d(z, w) = 2|z−w|√
1+|z|2

√
1+|w|2

for all z, w ∈ C.

(j) X = The class of all finite subsets of a nonempty set and d(A,B) = The number of elements
of the set A△B (the symmetric difference of A and B).



(k) X = C[0, 1] and d(f, g) = (
1∫
0

|f(t)− g(t)|2 dt) 1
2 for all f, g ∈ C[0, 1].

3. For each of the following definitions, determine whether ∥ · ∥ is a norm on R2, where for each
(x, y) ∈ R2,

(a) ∥(x, y)∥ = (
√

|x|+
√
|y|)2.

(b) ∥(x, y)∥ =
√

x2

9
+ y2

4
.

(c) ∥(x, y)∥ =

{ √
x2 + y2 if xy ≥ 0,

max{|x|, |y|} if xy < 0.

4. If x ∈ Rn, then show that lim
p→∞

∥x∥p = ∥x∥∞.

5. If 1 ≤ p < q ≤ ∞, then show that ∥x∥q ≤ ∥x∥p for all x ∈ ℓp.

6. Determine whether ∥ · ∥ is a norm on C[0, 1], where for each f ∈ C[0, 1],
(a) ∥f∥ = min{∥f∥∞, 2∥f∥1}. (b) ∥f∥ = sup{t |f(t)| : t ∈ [0, 1]}.

7. Show that
(a) if x ∈ Rn, then lim

p→∞
∥x∥p = ∥x∥∞ .

(b) if x ∈ ℓq for some 1 ≤ q < ∞, then lim
p→∞

∥x∥p = ∥x∥∞ .

(c) if f ∈ C[a, b], then lim
p→∞

∥f∥p = ∥f∥∞ .

8. Let d be a metric on a real vector space X satisfying the following two conditions:
(i) d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X,
(ii) d(αx, αy) = |α|d(x, y) for all x, y ∈ X and for all α ∈ R.

Show that there exists a norm ∥ · ∥ on X such that d(x, y) = ∥x− y∥ for all x, y ∈ X.

9. Let R∞ be the real vector space of all sequences in R, where addition and scalar multiplication

are defined componentwise. Let d((xn), (yn)) =
∞∑
n=1

1
2n

· |xn−yn|
1+|xn−yn| for all (xn), (yn) ∈ R∞. Show

that d is a metric on R∞ but that no norm on R∞ induces d.

10. Let (X, ∥ · ∥) be a nonzero normed vector space. Consider the metrics d1, d2 and d3 on X:

d1(x, y) := min{1, ∥x− y∥},

d2(x, y) :=
∥x− y∥

1 + ∥x− y∥
,

d3(x, y) :=

{
1 + ∥x− y∥ if x ̸= y,
0 if x = y,

for all x, y ∈ X. Prove that none of d1, d2 and d3 is induced by any norm on X.

11. Let X be a normed vector space containing more than one point, let x, y ∈ X and let ε, δ > 0.
If Bε[x] = Bδ[y], show that x = y and ε = δ. Does the result remain true if X is assumed to
be a metric space? Justify.

12. Determine whether the following sets are open and/or closed in R2 (with the usual metric).
(a) {(x, y) ∈ R2 : xy > 0}
(b) {(x, x) : x ∈ R}
(c) (0, 1)× {0}
(d) {(x, y) ∈ R2 : 0 < x < y}



(e) {(x, y) ∈ R2 : x+ y < 1}
(f) {(x, y) ∈ R2 : y ∈ Z}

13. Let A = {(x, y, z) ∈ R3 : x2 + y2 < 1} and B = {(x, y, z) ∈ R3 : z = 0}. Examine whether
A ∩B is a closed/an open subset of R3 with respect to the usual metric on R3.

14. Determine whether a finite subset of a metric space is open and/or closed.

15. For all x, y ∈ R, let d1(x, y) = |x− y|, d2(x, y) = min{1, |x− y|} and d3(x, y) =
|x−y|

1+|x−y| . If G is

an open set in any one of the three metric spaces (R, di) (i = 1, 2, 3), then show that G is also
open in the other two metric spaces.

16. Let X be a nonzero normed vector space. Show that {x ∈ X : ∥x∥ < 1} is not closed in X and
{x ∈ X : ∥x∥ ≤ 1} is not open in X.

17. Show that A = {f ∈ C[0, 1] : ∥f∥1 < 1} is an unbounded subset of the normed linear space
(C[0, 1], ∥ · ∥∞) .

18. Let X be a normed vector space and let Y (̸= X) be a subspace of X. Show that Y is not open
in X.

19. Let Fn be a sequence of closed sets in R such that Fn ⊂ (n, n+ 1] and Fn ∩ Fm = ∅, whenever
m ̸= n. Show that F =

∞⋃
n=1

Fn is a closed set in R.

20. Let A(̸= ∅) ⊂ Rn be such that every continuous function f : A → R is bounded. Show that A
is a compact subset of Rn.

21. Let f : R2 → R be continuous such that lim
∥x∥2→∞

f(x) = 1. Show that f is bounded on R2.

22. Let X, Y be metric spaces and let X be compact. If f : X → Y is a bijective continuous
function, then show that f−1 : Y → X is continuous.

23. Let α > 0 and let f : (Rn, ∥ · ∥2) → (Rm, ∥ · ∥2) be continuous such that
∥f(x) − f(y)∥2 ≥ α∥x − y∥2 for all x,y ∈ Rn. Show that the range of f is a closed subset of
(Rm, ∥ · ∥2).

24. Let f : [0, 1] → R be continuous. Show that f(A) ⊂ f(A) for all A ⊂ [0, 1].

25. Let f : X → Y be continuous, where X and Y are metric spaces. If x ∈ X is a limit point of
A ⊂ X, then show that f(x) ∈ f(A) or f(x) is a limit point of f(A).

26. Let f : (X, d) → R be a continuous function. Show that {x ∈ X : f(x) ̸= 0} is an open set in
the metric space (X, d).

27. Let (xn) and (yn) be Cauchy sequences in a metric space (X, d). Show that the sequence
(d(xn, yn)) is convergent.



28. Let (xn) be a sequence in a complete metric space (X, d) such that
∞∑
n=1

d(xn, xn+1) < ∞. Show

that (xn) converges in (X, d).

29. Let (xn) be a sequence in a metric space X such that each of the subsequences (x2n), (x2n−1)
and (x3n) converges in X. Show that (xn) converges in X.

30. Show that each of the following metric spaces is not complete.
(a) (N, d), where d(m,n) = | 1

m
− 1

n
| for all m,n ∈ N

(b) ((0,∞), d), where d(x, y) = | 1
x
− 1

y
| for all x, y ∈ (0,∞)

(c) (R, d), where d(x, y) = | x
1+|x| −

y
1+|y| | for all x, y ∈ R

(d) (R, d), where d(x, y) = |ex − ey| for all x, y ∈ R

31. Examine whether the following metric spaces are complete.
(a) ([0, 1), d), where d(x, y) = | x

1−x
− y

1−y
| for all x, y ∈ [0, 1)

(b) ((−1, 1), d), where d(x, y) = | tan πx
2
− tan πy

2
| for all x, y ∈ (−1, 1)

32. For X(̸= ∅) ⊂ R, let d(x, y) = |x−y|
1+|x−y| for all x, y ∈ X. Determine whether the metric space

(X, d) is complete, where X is
(a) [0, 1] ∩Q.
(b) [−1, 0] ∪ [1,∞).
(c) {n2 : n ∈ N}.

33. For f ∈ C1[0, 1], define ∥f∥ = ∥f∥1 + ∥f∥∞. Determine whether (C1[0, 1], ∥ · ∥) is a complete
normed linear space.

34. Determine whether the sequence (fn) converges in (C[0, 1], d∞), where for all n ∈ N and for all
t ∈ [0, 1],

(a) fn(t) =
nt2

1+nt
.

(b) fn(t) = 1 + t+ t2

2!
+ · · ·+ tn

n!
.

(c) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

1
nt

if 1
n
< t ≤ 1.

(d) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

n
n−1

(1− t) if 1
n
< t ≤ 1.

35. Let f : [0, 1] → R be continuous and f(1) = 0. If fn(x) = f(x)xn for all x ∈ [0, 1] and for all
n ∈ N, then examine whether the sequence (fn) converges uniformly on [0, 1].

36. Let X be a metric space and let f, g, fn, gn : X → R (n ∈ N) be such that fn → f uniformly
on X and gn → g uniformly on X.
(a) Show that fn + gn → f + g uniformly on X.
(b) Is it necessary that fn.gn → f.g uniformly on X ? Justify.
(c) If f and g are bounded on X, then show that fn.gn → f.g uniformly on X.

37. Let X be a metric space and let (fn) be a sequence of real-valued bounded functions on X. If
f : X → R is such that fn → f uniformly on X, then show that f is bounded on X.
Does this result hold if fn → f pointwise on X ? Justify.

38. Let (fn) be a uniformly convergent sequence of real-valued bounded functions defined on a
metric space X. Show that there exists M > 0 such that |fn(x)| ≤ M for all x ∈ X and for all



n ∈ N.

39. Determine whether the series
∞∑
n=1

(−1)n−1

(2n−1)!
x2n−1 is uniformly convergent in R.

40. Let X be a normed vector space and let x ∈ X. Show that

∥x∥ = inf
{

1
|α| : α ∈ R \ {0}, ∥αx∥ ≤ 1

}
.

41. Let X be a normed vector space and let x, y ∈ X. Show that ∥x∥ ≤ max{∥x+ y∥, ∥x− y∥}.

42. Let X be a vector space over R and let p : X → [0,∞) satisfy the following three conditions:
(i) p(x) = 0 iff x = 0 (x ∈ X).
(ii) p(αx) = |α|p(x) for all x ∈ X and for all α ∈ R.
(iii) {x ∈ X : p(x) ≤ 1} is a convex subset of X.
Show that p is a norm on X.
(A subset S of X is said to be convex if (1− t)x+ ty ∈ S for all x, y ∈ S and for all t ∈ [0, 1].)

43. Let f : Rn → Rn be continuous and let there exist α > 0 such that ∥f(x)− f(y)∥ ≥ α∥x− y∥
for all x,y ∈ Rn. Show that f(Rn) is complete.

44. Let X be a complete metric space. Let f : X → X be a contraction and let g : X → X be
such that f ◦ g = g ◦ f . Show that g has a fixed point in X. Is it necessary that the fixed point
of g in X is unique? Justify.

45. Let (X, d) be a complete metric space and f : X → X be such that fm : X → X is a contrac-
tion for some m ∈ N. Show that f has a unique fixed point in X.

46. Let (X, d) be a compact metric space and let f : X → X be such that d(f(x), f(y)) < d(x, y)
for all x, y ∈ X with x ̸= y. Show that f has a fixed point in X.

47. Let f : Rn → Rn be a contraction and g(x) = x− f(x) for all x ∈ Rn. Show that g : Rn → Rn

is one-to-one and onto. Also, show that both g and g−1 : Rn → Rn are continuous.

48. Using the contraction mapping theorem, show that the equation 4x5 − 2x2 − 4x + 1 = 0 has
exactly one root in

(
0, 1

2

)
.

49. Using the contraction mapping theorem, show that the initial value problem dy
dx

= x+ sin(x2y)

for x ∈ [0, 1], y(0) = 1
2
, has a unique solution.

50. Let f : Rn → Rn be a contraction and let g(x) = x−f(x) for all x ∈ Rn. Show that g : Rn → Rn

is one-to-one and onto. Also, show that both g and g−1 : Rn → Rn are continuous.

51. Let a1 = 1 and an+1 = 3
√

1 + a2n. Using fixed point theory, prove that the sequence {an} is
convergent, and that its limit satisfies the equation x3 − x2 − 1 = 0.

52. Using fixed point theory, determine all functions f ∈ C[0, 1] such that f(x) =
∫ x

0
(x− y)f(y)dy.

53. Let B = {x ∈ Rn : ∥x∥2 < 1} and let f : (B, d2) → (B, d2) be continuous such that
∥f(x)∥2 < ∥x∥2 for all x ∈ B \ {0}. Let x1 ∈ B \ {0} and let xk+1 = f(xk) for all k ∈ N. Show
that xk → 0.


