
MA642: Real Analysis -1
( Assignment 1: Metric and Normed Linear Spaces)

July - November, 2025

1. State TRUE or FALSE giving proper justification for each of the following statements.
(a) There does not exist a monotone function f : R → Q which is onto.
(b) There exists a monotone function f : (0,∞) → R such that each c ∈ (0,∞) satisfies

|f(c+)− f(c−)| = 1
c
.

(c) There exists a sequence of differentiable functions fn on (0,∞) such that f ′
n is uniformly

convergent on (0,∞) but fn is nowhere point-wise convergent.
(d) There exists a metric space having exactly 36 open sets.
(e) It is impossible to define a metric d on R such that only finitely many subsets of R are open

in (R, d).
(f) If A and B are open (closed) subsets of a normed vector space X, then A + B = {a + b :

a ∈ A, b ∈ B} is open (closed) in X.
(g) If A and B are closed subsets of [0,∞) (with the usual metric), then A + B is closed in

[0,∞).
(h) It is possible to define a metric d on R such that the sequence (1, 0, 1, 0, ...) converges in

(R, d).
(i) It is possible to define a metric d on R2 such that (( 1

n
, n
n+1

)) is not a Cauchy sequence in

(R2, d).
(j) It is possible to define a metric d on R2 such that in (R2, d), the sequence (( 1

n
, 0)) converges

but the sequence (( 1
n
, 1
n
)) does not converge.

(k) Let A ⊂ (1,∞) be a closed set. Then A2 := {a2 : a ∈ A} is a closed set.

(l) Let An = {(x, y) ∈ R2 : 0 < 1
x
< y < 1

n
}. Whether the set

∞⋂
n=1

An is open/closed?

(m) There exist a set A ⊂ (R, u) such that δ (Ao ∪ {0}) = 0 but δ
(
(Ā)o

)
= 1, where δ stands

for diameter.
(n) If (xn) is a sequence in a complete normed vector space X such that ∥xn+1 − xn∥ → 0 as

n → ∞, then (xn) must converge in X.
(o) If (fn) is a sequence in C[0, 1] such that |fn+1(x) − fn(x)| ≤ 1

n2 for all n ∈ N and for all

x ∈ [0, 1], then there must exist f ∈ C[0, 1] such that
1∫
0

|fn(x)− f(x)| dx → 0 as n → ∞.

(p) If (xn) is a Cauchy sequence in a normed vector space, then lim
n→∞

∥xn∥ must exist.

(q) {f ∈ C[0, 1] : ∥f∥1 ≤ 1} is a bounded subset of the normed vector space (C[0, 1], ∥ · ∥∞).
(r) For x, y ∈ l∞, d(x, y) = min{1, lim sup |xn − yn|} define a metric on l∞.

(s) The sequence fn(t) = e−n2 sinπt converge uniformly to 0 on (0, 1).
(t) If sequence (xn) in R satisfies 0 ≤ inf xn sup xn < ∞, then xn has necessarily convergent

subsequence.
(u) If f : R → R is continuous, bounded and monotone function, then lim

x→±∞
f(x) are necessarily

finite?

2. What is the cardinality of the set {f : R → R, f is nowhere continuous}?
3. For a monotone increasing function f : [a, b] → R, define g(x) = sup{f(y) : y < x}. If f has

limit at c, then show that f(c) = g(c).
4. Examine whether (X, d) is a metric space, where

(a) X = R and d(x, y) = |x−y|
1+|xy| for all x, y ∈ R.

(b) X = R and d(x, y) = |x− y|p for all x, y ∈ R (0 < p < 1).

(c) X = R and d(x, y) = min{
√

|x− y|, |x− y|2} for all x, y ∈ R.



(d) X = R and for all x, y ∈ R, d(x, y) =
{

1 + |x− y| if exactly one of x and y is positive,
|x− y| otherwise.

(e) X = R2 and d(x, y) = (|x1 − y1|+ |x2 − y2|
1
2 )

1
2 for all x = (x1, x2), y = (y1, y2) ∈ R2.

(f) X = Rn and d(x, y) = [(x1− y1)
2+ 1

2
(x2− y2)

2+ · · ·+ 1
n
(xn− yn)

2]
1
2 for all x = (x1, ..., xn),

y = (y1, ..., yn) ∈ Rn.

(g) X = C and for all z, w ∈ C, d(z, w) =
{

min{|z|+ |w|, |z − 1|+ |w − 1| if z ̸= w,
0 if z = w.

(h) X = C and for all z, w ∈ C, d(z, w) =
{

|z − w| if z
|z| =

w
|w| ,

|z|+ |w| otherwise.

(i) X = C and d(z, w) = 2|z−w|√
1+|z|2

√
1+|w|2

for all z, w ∈ C.

(j) X = The class of all finite subsets of a nonempty set and d(A,B) = The number of elements
of the set A△B (the symmetric difference of A and B).

5. Let 1 ≤ p ≤ ∞ and di ; i = 1, 2 be two metric on a non-emply set X. Show that dp = (dp1+dp2)
1/p

is a metric on X for 1 ≤ p < ∞. Whether d∞ = max{d1, d2} is a metric on X?
6. Examine whether ∥ · ∥ is a norm on R2, where for each (x, y) ∈ R2,

(a) ∥(x, y)∥ = (|x|p + |y|p)
1
p , where 0 < p < 1.

(b) ∥(x, y)∥ =
√

x2

9
+ y2

4
.

(c) ∥(x, y)∥ =

{ √
x2 + y2 if xy ≥ 0,

max{|x|, |y|} if xy < 0.

7. Let ∥f∥ = min{∥f∥∞, 2∥f∥1} for all f ∈ C[0, 1]. Prove that ∥ · ∥ is not a norm on C[0, 1].
8. Let X be a normed linear space. Prove that norm of any x ∈ X, can be expressed as ∥x∥ =

inf {|α| : α ∈ C \ {0} with ∥x∥ ≤ |α|} .
9. Let (X, ∥ · ∥) be a normed linear space. Show that ∥x∥ = sup {|α| : |α| < ∥x∥} .
10. Let (X, ∥·∥) be a normed linear space and let p be a seminorm onX. Show that p : (X, ∥·∥) → R

is continuous iff there exists α > 0 such that p(x) ≤ α∥x∥ for all x ∈ X.
11. If 1 ≤ p < q ≤ ∞, then show that ∥x∥q ≤ ∥x∥p for all x ∈ ℓp.
12. If x ∈ Rn, then show that lim

p→∞
∥x∥p = ∥x∥∞. And if x ∈ lp, then show that lim inf

p→∞
∥x∥p ≥ ∥x∥∞.

13. Let d be a metric on a real vector space X satisfying the following two conditions:
(i) d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X,
(ii) d(αx, αy) = |α|d(x, y) for all x, y ∈ X and for all α ∈ R.

Show that there exists a norm ∥ · ∥ on X such that d(x, y) = ∥x− y∥ for all x, y ∈ X.
14. Let f be a non-negative function on a linear space X such that f(αx) = |α|f(x) for all α ∈ C.

Show that f is norm on X if and only if f is a convex map which can vanish at most at one
point.

15. Let f : (X, d) → [0, 1] be continuous map. Show that f−1(0) is a closed Gδ set.
16. Let (xn) be a sequence in a normed linear space X which converges to a non-zero vector x ∈ X.

Show that x1+···+xn

nα → x if and only if α = 1. What are admissible values of α if xn → 0?

17. For x = (xn) ∈ l2, write ∥x∥ = (
∞∑
n=1

an|xn|2)1/2. Find all possible sequences (an) such that ∥ · ∥

is a norm on l2.
18. Let R∞ be the real vector space of all sequences in R, where addition and scalar multiplication

are defined componentwise. Let d((xn), (yn)) =
∞∑
n=1

1
2n

· |xn−yn|
1+|xn−yn| for all (xn), (yn) ∈ R∞. Show

that d is a metric on R∞ but that no norm on R∞ induces d.



19. Let (X, ∥ · ∥) be a nonzero normed vector space. Consider the metrics d1, d2 and d3 on X:

d1(x, y) := min{1, ∥x− y∥},

d2(x, y) :=
∥x− y∥

1 + ∥x− y∥
,

d3(x, y) :=

{
1 + ∥x− y∥ if x ̸= y,
0 if x = y,

for all x, y ∈ X. Prove that none of d1, d2 and d3 is induced by any norm on X.

20. Let X be a normed vector space containing more than one point, let x, y ∈ X and let ε, δ > 0.
If Bε[x] = Bδ[y], show that x = y and ε = δ. Does the result remain true if X is assumed to
be a metric space? Justify.

21. Let A = {(x, y, z) ∈ R3 : x2 + y2 < 1} and B = {(x, y, z) ∈ R3 : z = 0}. Examine whether
A ∩B is a closed/an open subset of R3 with respect to the usual metric on R3.

22. Let Fn be a sequence of closed sets in R such that Fn ⊂ (n, n+ 1] and Fn ∩ Fm = ∅, whenever
m ̸= n. Show that F =

∞⋃
n=1

Fn is a closed set in R.

23. For all x, y ∈ R, let d1(x, y) = |x− y|, d2(x, y) = min{1, |x− y|} and d3(x, y) =
|x−y|

1+|x−y| . If G is

an open set in any one of the three metric spaces (R, di) (i = 1, 2, 3), then show that G is also
open in the other two metric spaces.

24. Let X be a normed vector space and let Y (̸= X) be a subspace of X. Show that Y is not open
in X.

25. Let (xn) and (yn) be Cauchy sequences in a metric space (X, d). Show that the sequence
(d(xn, yn)) is convergent.

26. Let do be the discrete metric on non-empty set X. Show that (X, do) is complete.

27. Let (xn) be a sequence in a complete metric space (X, d) such that
∞∑
n=1

d(xn, xn+1) < ∞. Show

that (xn) converges in (X, d).

28. Let (xn) be a sequence in a metric space X such that each of the subsequences (x2n), (x2n−1)
and (x3n) converges in X. Show that (xn) converges in X.

29. Show that the following are incomplete metric spaces.
(a) (N, d), where d(m,n) = | 1

m
− 1

n
| for all m,n ∈ N

(b) ((0,∞), d), where d(x, y) = | 1
x
− 1

y
| for all x, y ∈ (0,∞)

(c) (R, d), where d(x, y) = | x
1+|x| −

y
1+|y| | for all x, y ∈ R

(d) (R, d), where d(x, y) = |ex − ey| for all x, y ∈ R

30. Examine whether the following metric spaces are complete.
(a) ([0, 1), d), where d(x, y) = | x

1−x
− y

1−y
| for all x, y ∈ [0, 1)

(b) ((−1, 1), d), where d(x, y) = | tan πx
2
− tan πy

2
| for all x, y ∈ (−1, 1)

(c) ((0, 2], d), where d(x, y) = | 1
x
− 1

y
|

31. For X(̸= ∅) ⊂ R, let d(x, y) = |x−y|
1+|x−y| for all x, y ∈ X. Examine the completeness of the metric

space (X, d), where X is
(a) [0, 1] ∩Q.
(b) [−1, 0] ∪ [1,∞).
(c) {n2 : n ∈ N}.



32. Let X = C[0, 1] be the space all the continuous functions on interval [0, 1]. Prove that norms
∥ . ∥∞ and ∥ . ∥1 on X are not equivalent.

33. Let C1[0, 1] denote the space of all continuously differentiable functions on [0, 1]. For f ∈
C1[0, 1], define ∥f∥ = ∥f∥∞ + ∥f ′∥∞. Show that space (C1[0, 1], ∥ . ∥) is a Banach space.

34. The space (C1[0, 1], ∥ . ∥) , where ∥f∥ = (∥f∥22 + ∥f ′∥22)
1
2 is complete.

35. Let f ∈ C1[0, 1] and ∥f∥ = ∥f ′∥2 + ∥f∥∞. Then verify if (C1[0, 1], ∥ . ∥) is complete.
36. Let f ∈ C1[0, 1]. Then verify if ∥f∥ = min (∥f ′∥2, ∥f∥∞) defines a norm on C1[0, 1].
37. Let X = {f ∈ C1[0, 1] : f(0) = 0}. Then ∥f∥ = ∥f ′∥2 is a norm on C1[0, 1] but not complete.
38. Let D = {z ∈ C : |z| < 1}. Let X be the class of all functions f which are analytic on D and

continuous on D̄. Define ∥f∥ = sup{|f(eit)| : 0 ≤ t ≤ 2π}. Show that (X, ∥ . ∥) is complete.

39. Examine whether the sequence (fn) is convergent in (C[0, 1], d∞), where for all n ∈ N and for
all t ∈ [0, 1],

(a) fn(t) =
nt2

1+nt
.

(b) fn(t) = 1 + t+ t2

2!
+ · · ·+ tn

n!
.

(c) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

1
nt

if 1
n
< t ≤ 1.

(d) fn(t) =

{
nt if 0 ≤ t ≤ 1

n
,

n
n−1

(1− t) if 1
n
< t ≤ 1.

40. Find the point-wise limit of the sequence fn(t) = e−nt2 sinnt. Examine for uniform convergence
of fn on R.

41. Let fn, f : R → (0,∞) be such that fn → f uniformly on R. Examine for efn → ef uniformly
on R.

42. Let fn(t) =
√
t2 + n. Examine for the uniform convergence of f ′

n on R.
43. Let X be the class of all continuous functions f : R → C such that for each ϵ > 0, there exists a

compact set K ⊂ R such that |f(x)| < ϵ, for all x ∈ R \K. Show that (X, ∥ . ∥∞) is complete.
44. Let 1 ≤ p < ∞. Let Xp be a class of all the Riemann integrable functions on [0, 1]. Prove that

∥f∥p =
(∫ 1

0
|f |p

) 1
p
< ∞. Prove that (Xp, ∥ . ∥p) is a normed linear space but not complete.

45. Show that {(xn) ∈ l2 : |xn| < 1
n
for all n ∈ N} is a convex set with empty interior.

46. Suppose that x ∈ lp for some p ≥ 1. Show that lim
p→∞

inf ∥x||p ≥ ∥x∥∞. Prove/disprove that

lim
p→∞

∥x∥p = ∥x∥∞.

47. Let M be a subspace of a normed linear space X. Then show that M is closed if and only if
{y ∈ M : ∥y∥ ≤ 1} is closed in X.

48. Let T : (C[0, π
2
], ∥.∥∞) → (C[0, π

2
], ∥.∥∞) be defined by (Tf)(x) =

∫ x

s=0
f(s) sin sds. Show that

T is not a contraction but T 2 is a contraction.
49. Let f : Rn → Rn be continuous and let there exist α > 0 such that ∥f(x)− f(y)∥ ≥ α∥x− y∥

for all x,y ∈ Rn. Show that f(Rn) is complete.
50. Let f : Rn → Rn be a contraction and let g(x) = x − f(x) for all x ∈ Rn. Show that

g : Rn → Rn is one-one and onto. Also, show that both g and g−1 : Rn → Rn are continuous.
51. Find a neighborhood of x = 0 in which initial value problem y′ = x

1+y2
with y(0) = 0 has a

unique solution.


