MA15010H: Multi-variable Calculus

(Assignment 3 Hint/model solutions: Directional derivatives and differentiability)

July - November, 2025

1. Let S be a nonempty open subset of \mathbb{R}^2 and let $f: S \to \mathbb{R}$ be such that the partial derivatives f_x and f_y exist at each point of S. If $f_x: S \to \mathbb{R}$ and $f_y: S \to \mathbb{R}$ are bounded, then show that f is continuous.

Solution. Since f_x and f_y are bounded, there exist $M_1, M_2 > 0$ such that $|f_x(x,y)| \leq M_1$ and $|f_y(x,y)| \leq M_2$ for all $(x,y) \in S$. Let $(x_0,y_0) \in S$. Since S is open in \mathbb{R}^2 , there exists r > 0 such that $B_r((x_0,y_0)) \subseteq S$. For all $h,k \in \mathbb{R}$ with $|h| < \frac{r}{2}$, $|k| < \frac{r}{2}$, we have

$$|f(x_0 + h, y_0 + k) - f(x_0, y_0)| = |f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) + f(x_0, y_0 + k) - f(x_0, y_0)|$$

$$\leq |f(x_0 + h, y_0 + k) - f(x_0, y_0 + k)|$$

$$+ |f(x_0, y_0 + k) - f(x_0, y_0)|$$

$$\leq |h||f_x(x_0 + \theta_1 h, y_0 + k)| + |k||f_y(x_0, y_0 + \theta_2 k)|$$

for some $\theta_1, \theta_2 \in (0,1)$ (using Lagrange's mean value theorem of single real variable). Hence if $\epsilon > 0$, then choosing $\delta = \min\left\{\frac{r}{2}, \frac{\epsilon}{M_1 + M_2}\right\} > 0$, we find that $|f(x_0 + h, y_0 + k) - f(x_0, y_0)| \leq M_1 |h| + M_2 |k| < \epsilon$ for all $(h, k) \in \mathbb{R}^2$ with $||(h, k)|| = \sqrt{h^2 + k^2} < \delta$. Therefore f is continuous at (x_0, y_0) . Since $(x_0, y_0) \in S$ is arbitrary, f is continuous.

2. Find all $u \in \mathbb{R}^2$ with ||u|| = 1 for which the directional derivative $D_u f(0,0)$ exists (in \mathbb{R}), if for all $(x,y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} 1, & \text{if } y < x^2 < 2y, \\ 0, & \text{otherwise.} \end{cases}$$

Solution. Let $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1. We have

$$\lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{f(tu_1, tu_2)}{t} = \lim_{t \to 0} \frac{0}{t} = 0.$$

(The inequalities $tu_2 < t^2u_1^2 < 2tu_2$ are equivalent to the inequalities:

$$(i)u_2 < tu_1^2 < 2u_2 \text{ if } t > 0$$

 $(ii)u_2 > tu_1^2 > 2u_2 \text{ if } t < 0.$

We can make $|tu_1^2|$ arbitrarily small for sufficiently small |t| > 0 and hence for such t, at least one inequality in each of (i) and (ii) cannot be satisfied. Thus we get $f(tu_1, tu_2) = 0$ for sufficiently small |t| > 0.) Therefore $D_u f(0, 0)$ exists (and equals 0) for each $u \in \mathbb{R}^2$ with ||u|| = 1.

3. State TRUE or FALSE with justification: If $f : \mathbb{R}^2 \to \mathbb{R}$ is continuous such that all the directional derivatives of f at (0,0) exist (in \mathbb{R}), then f must be differentiable at (0,0).

Solution. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{x^2y\sqrt{x^2+y^2}}{x^4+y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

We know that f is continuous at each point of $\mathbb{R}^2 \setminus \{(0,0)\}$. Let $\epsilon > 0$. We have

$$|f(x,y) - f(0,0)| = \left| \frac{x^2 y}{x^4 + y^2} \right| \sqrt{x^2 + y^2} \le \frac{1}{2} \sqrt{x^2 + y^2}$$

for all $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$ and |f(x,y)-f(0,0)|=0 if (x,y)=(0,0). Hence choosing $\delta=2\epsilon>0$, we find that $|f(x,y)-f(0,0)|<\epsilon$ for all $(x,y)\in\mathbb{R}^2$ satisfying $\|(x,y)-(0,0)\|=\sqrt{x^2+y^2}<\delta$. This shows that f is continuous at (0,0) and therefore f is continuous.

If $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1, then

$$\lim_{t \to 0} \frac{f((0,0) + tu) - f(0,0)}{t} = \lim_{t \to 0} \frac{u_1^2 u_2 t |t| \sqrt{u_1^2 + u_2^2}}{t^2 u_1^4 + u_2^2} = 0$$

i.e., $D_u f(0,0)$ exists. Hence all the directional derivatives of f at (0,0) exist.

Again,

$$\lim_{(h,k)\to(0,0)} \frac{|f(h,k)-f(0,0)-hf_x(0,0)-kf_y(0,0)|}{\sqrt{h^2+k^2}} = \lim_{(h,k)\to(0,0)} \frac{h^2k}{h^4+k^2} \neq 0.$$

since $\left(\frac{1}{n}, \frac{1}{n^2}\right) \to (0, 0)$, but

$$\frac{\frac{1}{n^2}\frac{1}{n^2}}{\frac{1}{n^4} + \frac{1}{n^4}} = \frac{1}{2} \neq 0.$$

Hence f is not differentiable at (0,0). Therefore the given statement is **FALSE**.

4. Determine all the points of \mathbb{R}^2 where $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable, if for all $(x, y) \in \mathbb{R}^2$,

$$f(x,y) = \begin{cases} x^{4/3} \sin\left(\frac{y}{x}\right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Solution. Let $E = \{(x, y) \in \mathbb{R}^2 : x \neq 0\}$. Since

$$f_x(x,y) = \frac{4}{3}x^{1/3}\sin\left(\frac{y}{x}\right) - \frac{y}{x^{2/3}}\cos\left(\frac{y}{x}\right)$$
 and $f_y(x,y) = x^{1/3}\cos\left(\frac{y}{x}\right)$

for all $(x,y) \in E$. $f_x : E \to \mathbb{R}$ and $f_y : E \to \mathbb{R}$ are continuous. Hence f is differentiable at all $(x,y) \in E$. Let $y_0 \in \mathbb{R}$ and let $\epsilon > 0$. Then

$$f_x(0, y_0) = \lim_{h \to 0} \frac{f(h, y_0) - f(0, y_0)}{h} = \lim_{h \to 0} h^{1/3} \sin(\frac{y_0}{h}) = 0$$

(since $|h^{1/3}\sin(\frac{y_0}{h})| \le |h|^{1/3}$ for all $h \in \mathbb{R} \setminus \{0\}$) and

$$f_y(0, y_0) = \lim_{k \to 0} \frac{f(0, y_0 + k) - f(0, y_0)}{k} = 0.$$

Also, for all $(x,y) \in E$, we have $f_y(x,y) = x^{1/3}\cos(y/x)$, and so

$$|f_y(x,y) - f_y(0,y_0)| \le |x|^{1/3} < \epsilon$$
 for all $(x,y) \in B_\delta((0,y_0))$,

where $\delta = \epsilon^3 > 0$. Thus $f_x(0, y_0)$ exists (in \mathbb{R}), $f_y(x, y_0)$ exists (in \mathbb{R}) for all $(x, y) \in \mathbb{R}^2$ and $f_y : \mathbb{R}^2 \to \mathbb{R}$ is continuous at $(0, y_0)$. Hence by Ex.21 of Practice Problem Set - 3, f is differentiable at $(0, y_0)$. Therefore f is differentiable at all points of \mathbb{R}^2 .

Alternative solution: As shown above, f is differentiable at all $(x, y) \in \mathbb{R}^2$ for which $x \neq 0$. Let $y_0 \in \mathbb{R}$. Then as shown above, $f_x(0, y_0) = f_y(0, y_0) = 0$. For all $(h, k) \in \mathbb{R}^2$ with $h \neq 0$, we have

$$\epsilon(h,k) = \frac{|f(h,y_0+k) - f(0,y_0) - hf_x(0,y_0) - kf_y(0,y_0)|}{\sqrt{h^2 + k^2}} = \frac{h^{4/3} \sin \left| \left(\frac{y_0 + k}{h} \right) \right|}{\sqrt{h^2 + k^2}}$$
$$= \frac{|h|^{1/3} |h| |\sin(\frac{y_0 + k}{h})|}{\sqrt{h^2 + k^2}} \le |h|^{1/3}.$$

Also, $\epsilon(0,k) = 0$ for all $k \in \mathbb{R} \setminus \{0\}$. Hence it follows that

$$\lim_{(h,k)\to(0,0)} \epsilon(h,k) = 0.$$

Consequently, f is differentiable at $(0, y_0)$. Therefore f is differentiable at all points of \mathbb{R}^2 .

5. Let $f: S \subseteq \mathbb{R}^m \to \mathbb{R}$ be differentiable at $x_0 \in S^0$ and let $f(x_0) = 0$. If $g: S \to \mathbb{R}$ is continuous at x_0 , then show that $fg: S \to \mathbb{R}$, defined by (fg)(x) = f(x)g(x) for all $x \in S$, is differentiable at x_0 .

Solution. Since f is differentiable at x_0 , there exists $\alpha \in \mathbb{R}^m$ such that

$$\lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - \alpha \cdot h|}{\|h\|} = 0.$$

For all $h \in \mathbb{R}^m$ for which $x_0 + h \in S$, we have

$$(fg)(x_0+h)-(fg)(x_0)-g(x_0)\alpha\cdot h=(f(x_0+h)-f(x_0)-\alpha\cdot h)g(x_0+h)+(g(x_0+h)-g(x_0))\alpha\cdot h.$$

Hence for all $h \in \mathbb{R}^m \setminus \{0\}$ for which $x_0 + h \in S$, we have

$$\frac{|(fg)(x_0+h)-(fg)(x_0)-g(x_0)\alpha \cdot h|}{\|h\|} \le \frac{|f(x_0+h)-f(x_0)-\alpha \cdot h|}{\|h\|} |g(x_0+h)| + |g(x_0+h)-g(x_0)| \frac{|\alpha \cdot h|}{\|h\|}.$$

Since g is continuous at x_0 , $\lim_{h\to 0} g(x_0+h) = g(x_0)$ and since $|\alpha \cdot h| \le \|\alpha\| \|h\|$, it follows that

$$\lim_{h \to 0} \frac{|(fg)(x_0 + h) - (fg)(x_0) - g(x_0)\alpha \cdot h|}{\|h\|} = 0.$$

Since $g(x_0)\alpha \in \mathbb{R}^m$, we conclude that fg is differentiable at x_0 .

6. Show that $f: S \subseteq \mathbb{R}^2 \to \mathbb{R}$ is differentiable at $(x_0, y_0) \in S^0$ if and only if there exist functions $\varphi, \psi: S \to \mathbb{R}$ such that φ, ψ are continuous at (x_0, y_0) and

$$f(x,y) - f(x_0, y_0) = (x - x_0)\varphi(x,y) + (y - y_0)\psi(x,y)$$

for all $(x,y) \in S$.

Solution. We first assume that f is differentiable at (x_0, y_0) . Then $\alpha = f_x(x_0, y_0)$ and $\beta = f_y(x_0, y_0)$ exist (in \mathbb{R}). For each $(x, y) \in S$, let

$$g(x,y) = f(x,y) - f(x_0, y_0) - \alpha(x - x_0) - \beta(y - y_0),$$

then define

$$\varphi(x,y) = \begin{cases} \alpha + \frac{(x-x_0)g(x,y)}{(x-x_0)^2 + (y-y_0)^2}, & (x,y) \neq (x_0,y_0), \\ \alpha, & (x,y) = (x_0,y_0), \end{cases}$$

and

$$\psi(x,y) = \begin{cases} \beta + \frac{(y-y_0)g(x,y)}{(x-x_0)^2 + (y-y_0)^2}, & (x,y) \neq (x_0,y_0), \\ \beta, & (x,y) = (x_0,y_0). \end{cases}$$

If
$$(x, y) \in S \setminus \{(x_0, y_0)\}$$
, then

$$(x-x_0)\varphi(x,y) + (y-y_0)\psi(x,y) = \alpha(x-x_0) + \beta(y-y_0) + g(x,y) = f(x,y) - f(x_0,y_0).$$

Also, if $(x, y) = (x_0, y_0)$, then

$$(x - x_0)\varphi(x, y) + (y - y_0)\psi(x, y) = 0 = f(x, y) - f(x_0, y_0).$$

Hence for all $(x, y) \in S$, $f(x, y) - f(x_0, y_0) = (x - x_0)\varphi(x, y) + (y - y_0)\psi(x, y)$.

Again, for all $(x, y) \in S \setminus \{(x_0, y_0)\}$, we have

$$|\varphi(x,y)-\varphi(x_0,y_0)| = \frac{|x-x_0||g(x,y)|}{(x-x_0)^2 + (y-y_0)^2} \le \frac{|g(x,y)|}{\sqrt{(x-x_0)^2 + (y-y_0)^2}}.$$

Since f is differentiable at (x_0, y_0) , the limit

$$\lim_{(x,y)\to(x_0,y_0)} \frac{|g(x,y)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0,$$

and hence it follows that

$$\lim_{(x,y)\to(x_0,y_0)} \varphi(x,y) = \varphi(x_0,y_0).$$

Therefore φ is continuous at (x_0, y_0) . Similarly, we can show ψ is continuous at (x_0, y_0) .

Conversely, let there exist functions $\varphi, \psi : S \to \mathbb{R}$ such that φ, ψ are continuous at (x_0, y_0) and

$$f(x,y) - f(x_0, y_0) = (x - x_0)\varphi(x,y) + (y - y_0)\psi(x,y)$$

for all $(x,y) \in S$. Then for all $(x,y) \in S \setminus \{(x_0,y_0)\}$, we have

$$\frac{|f(x,y) - f(x_0, y_0) - (x - x_0)\varphi(x_0, y_0) - (y - y_0)\psi(x_0, y_0)|}{\sqrt{(x - x_0)^2 + (y - y_0)^2}}
\leq \frac{(x - x_0)|\varphi(x, y) - \varphi(x_0, y_0)|}{\sqrt{(x - x_0)^2 + (y - y_0)^2}} + \frac{(y - y_0)|\psi(x, y) - \psi(x_0, y_0)|}{\sqrt{(x - x_0)^2 + (y - y_0)^2}}
\leq |\varphi(x, y) - \varphi(x_0, y_0)| + |\psi(x, y) - \psi(x_0, y_0)|.$$

Since φ and ψ are continuous at (x_0, y_0) ,

$$\lim_{(x,y)\to(x_0,y_0)} |\varphi(x,y)-\varphi(x_0,y_0)| = 0 \quad \text{and} \quad \lim_{(x,y)\to(x_0,y_0)} |\psi(x,y)-\psi(x_0,y_0)| = 0.$$

Hence,

$$\lim_{(x,y)\to(x_0,y_0)} \frac{|f(x,y)-f(x_0,y_0)-(x-x_0)\varphi(x_0,y_0)-(y-y_0)\psi(x_0,y_0)|}{\sqrt{(x-x_0)^2+(y-y_0)^2}} = 0,$$

and therefore f is differentiable at (x_0, y_0) .

7. Let the temperature T(x,y) at any point $(x,y) \in \mathbb{R}^2$ be given by $T(x,y) = 2x^2 + xy + y^2$. An insect is at the point (1,1).

(a) What is the best direction for the insect to move to feel cooler?

(b) In which direction should the insect move to feel no change in temperature?

Solution. Since $T_x(x,y) = 4x + y$ and $T_y(x,y) = x + 2y$ for all $(x,y) \in \mathbb{R}^2$, $T_x : \mathbb{R}^2 \to \mathbb{R}$ and $T_y : \mathbb{R}^2 \to \mathbb{R}$ are continuous and hence $T : \mathbb{R}^2 \to \mathbb{R}$ is differentiable. Since

$$\nabla T(1,1) = (T_x(1,1), T_y(1,1)) = (5,3),$$

the temperature will decrease fastest in the direction

$$-\frac{1}{\|\nabla T(1,1)\|}\nabla T(1,1) = \left(-\frac{5}{\sqrt{34}}, -\frac{3}{\sqrt{34}}\right),$$

and so this is the best direction for the insect to start moving to feel cooler.

Again, if $u = (u_1, u_2) \in \mathbb{R}^2$ with ||u|| = 1 is the direction for the insect to feel no change in temperature, then we must have

$$D_u T(1,1) = \nabla T(1,1) \cdot u = 0.$$

This gives $5u_1 + 3u_2 = 0$. Since we also have $u_1^2 + u_2^2 = 1$, we get

$$u = \left(\frac{3}{\sqrt{34}}, -\frac{5}{\sqrt{34}}\right)$$
 or $\left(-\frac{3}{\sqrt{34}}, \frac{5}{\sqrt{34}}\right)$.