
MA15010H: Multi-variable Calculus
(Assignment 3 Hint/model solutions: Directional derivatives and

differentiability)
July - November, 2025

1. Let S be a nonempty open subset of R2 and let f : S → R be such that
the partial derivatives fx and fy exist at each point of S. If fx : S → R
and fy : S → R are bounded, then show that f is continuous.

Solution. Since fx and fy are bounded, there exist M1,M2 > 0 such
that |fx(x, y)| ≤ M1 and |fy(x, y)| ≤ M2 for all (x, y) ∈ S. Let
(x0, y0) ∈ S. Since S is open in R2, there exists r > 0 such that
Br((x0, y0)) ⊆ S. For all h, k ∈ R with |h| < r

2
, |k| < r

2
, we have

|f(x0 + h, y0 + k)− f(x0, y0)| = |f(x0 + h, y0 + k)− f(x0, y0 + k)

+ f(x0, y0 + k)− f(x0, y0)|
≤ |f(x0 + h, y0 + k)− f(x0, y0 + k)|
+ |f(x0, y0 + k)− f(x0, y0)|
≤ |h||fx(x0 + θ1h, y0 + k)|+ |k||fy(x0, y0 + θ2k)|

for some θ1, θ2 ∈ (0, 1) (using Lagrange’s mean value theorem of single

real variable). Hence if ϵ > 0, then choosing δ = min
{

r
2
, ϵ
M1+M2

}
> 0,

we find that |f(x0 + h, y0 + k)− f(x0, y0)| ≤M1|h|+M2|k| < ϵ for all
(h, k) ∈ R2 with ∥(h, k)∥ =

√
h2 + k2 < δ. Therefore f is continuous

at (x0, y0). Since (x0, y0) ∈ S is arbitrary, f is continuous. □

2. Find all u ∈ R2 with ∥u∥ = 1 for which the directional derivative
Duf(0, 0) exists (in R), if for all (x, y) ∈ R2,

f(x, y) =

{
1, if y < x2 < 2y,

0, otherwise.

Solution. Let u = (u1, u2) ∈ R2 with ∥u∥ = 1. We have

lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

f(tu1, tu2)

t
= lim

t→0

0

t
= 0.

(The inequalities tu2 < t2u21 < 2tu2 are equivalent to the inequalities:

(i)u2 < tu21 < 2u2 if t > 0

(ii)u2 > tu21 > 2u2 if t < 0.
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We can make |tu21| arbitrarily small for sufficiently small |t| > 0 and
hence for such t, at least one inequality in each of (i) and (ii) cannot
be satisfied. Thus we get f(tu1, tu2) = 0 for sufficiently small |t| > 0.)
Therefore Duf(0, 0) exists (and equals 0) for each u ∈ R2 with ∥u∥ = 1.

□

3. State TRUE or FALSE with justification: If f : R2 → R is continu-
ous such that all the directional derivatives of f at (0, 0) exist (in R),
then f must be differentiable at (0, 0).

Solution. Let f : R2 → R be defined by

f(x, y) =

{
x2y

√
x2+y2

x4+y2
, (x, y) ̸= (0, 0),

0, (x, y) = (0, 0).

We know that f is continuous at each point of R2 \ {(0, 0)}. Let ϵ > 0.
We have

|f(x, y)− f(0, 0)| =
∣∣∣∣ x2y

x4 + y2

∣∣∣∣√x2 + y2 ≤ 1

2

√
x2 + y2

for all (x, y) ∈ R2 \{(0, 0)} and |f(x, y)−f(0, 0)| = 0 if (x, y) = (0, 0).
Hence choosing δ = 2ϵ > 0, we find that |f(x, y) − f(0, 0)| < ϵ for all

(x, y) ∈ R2 satisfying ∥(x, y) − (0, 0)∥ =
√
x2 + y2 < δ. This shows

that f is continuous at (0, 0) and therefore f is continuous.
If u = (u1, u2) ∈ R2 with ∥u∥ = 1, then

lim
t→0

f((0, 0) + tu)− f(0, 0)

t
= lim

t→0

u21u2t|t|
√
u21 + u22

t2u41 + u22
= 0

i.e., Duf(0, 0) exists. Hence all the directional derivatives of f at (0, 0)
exist.

Again,

lim
(h,k)→(0,0)

|f(h, k)− f(0, 0)− hfx(0, 0)− kfy(0, 0)|√
h2 + k2

= lim
(h,k)→(0,0)

h2k

h4 + k2
̸= 0.

since
(
1
n
, 1
n2

)
→ (0, 0), but

1
n2

1
n2

1
n4 +

1
n4

=
1

2
̸= 0.

Hence f is not differentiable at (0, 0). Therefore the given statement
is FALSE.

□
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4. Determine all the points of R2 where f : R2 → R is differentiable,
if for all (x, y) ∈ R2,

f(x, y) =

{
x4/3 sin

(
y
x

)
, x ̸= 0,

0, x = 0.

Solution. Let E = {(x, y) ∈ R2 : x ̸= 0}. Since

fx(x, y) =
4

3
x1/3 sin

(y
x

)
− y

x2/3
cos

(y
x

)
and fy(x, y) = x1/3 cos

(y
x

)
for all (x, y) ∈ E. fx : E → R and fy : E → R are continuous. Hence
f is differentiable at all (x, y) ∈ E. Let y0 ∈ R and let ϵ > 0. Then

fx(0, y0) = lim
h→0

f(h, y0)− f(0, y0)

h
= lim

h→0
h1/3 sin(

y0
h
) = 0

(since |h1/3 sin(y0
h
)| ≤ |h|1/3 for all h ∈ R\{0}) and

fy(0, y0) = lim
k→0

f(0, y0 + k)− f(0, y0)

k
= 0.

Also, for all (x, y) ∈ E, we have fy(x, y) = x1/3 cos(y/x), and so

|fy(x, y)− fy(0, y0)| ≤ |x|1/3 < ϵ for all (x, y) ∈ Bδ((0, y0)),

where δ = ϵ3 > 0. Thus fx(0, y0) exists (in R), fy(x, y) exists (in R) for
all (x, y) ∈ R2 and fy : R2 → R is continuous at (0, y0). Hence by Ex.21
of Practice Problem Set - 3, f is differentiable at (0, y0). Therefore f
is differentiable at all points of R2. □

Alternative solution: As shown above, f is differentiable at all (x, y) ∈
R2 for which x ̸= 0. Let y0 ∈ R. Then as shown above, fx(0, y0) =
fy(0, y0) = 0. For all (h, k) ∈ R2 with h ̸= 0, we have

ϵ(h, k) =
|f(h, y0 + k)− f(0, y0)− hfx(0, y0)− kfy(0, y0)|√

h2 + k2
=
h4/3 sin |

(
y0+k
h

)
|

√
h2 + k2

=
|h|1/3|h|| sin(y0+k

h
)|

√
h2 + k2

≤ |h|1/3.

Also, ϵ(0, k) = 0 for all k ∈ R \ {0}. Hence it follows that

lim
(h,k)→(0,0)

ϵ(h, k) = 0.

Consequently, f is differentiable at (0, y0). Therefore f is differentiable
at all points of R2.

5. Let f : S ⊆ Rm → R be differentiable at x0 ∈ S0 and let f(x0) = 0.
If g : S → R is continuous at x0, then show that fg : S → R, defined
by (fg)(x) = f(x)g(x) for all x ∈ S, is differentiable at x0.
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Solution. Since f is differentiable at x0, there exists α ∈ Rm such
that

lim
h→0

|f(x0 + h)− f(x0)− α · h|
∥h∥

= 0.

For all h ∈ Rm for which x0 + h ∈ S, we have

(fg)(x0+h)−(fg)(x0)−g(x0)α·h = (f(x0+h)−f(x0)−α·h)g(x0+h)+(g(x0+h)−g(x0))α·h.
Hence for all h ∈ Rm \ {0} for which x0 + h ∈ S, we have

|(fg)(x0 + h)− (fg)(x0)− g(x0)α · h|
∥h∥

≤ |f(x0 + h)− f(x0)− α · h|
∥h∥

|g(x0 + h)|

+|g(x0 + h)− g(x0)|
|α · h|
∥h∥

.

Since g is continuous at x0, limh→0 g(x0+h) = g(x0) and since |α ·h| ≤
∥α∥∥h∥, it follows that

lim
h→0

|(fg)(x0 + h)− (fg)(x0)− g(x0)α · h|
∥h∥

= 0.

Since g(x0)α ∈ Rm, we conclude that fg is differentiable at x0. □

6. Show that f : S ⊆ R2 → R is differentiable at (x0, y0) ∈ S0 if and
only if there exist functions φ, ψ : S → R such that φ, ψ are continuous
at (x0, y0) and

f(x, y)− f(x0, y0) = (x− x0)φ(x, y) + (y − y0)ψ(x, y)

for all (x, y) ∈ S.

Solution. We first assume that f is differentiable at (x0, y0). Then
α = fx(x0, y0) and β = fy(x0, y0) exist (in R). For each (x, y) ∈ S, let

g(x, y) = f(x, y)− f(x0, y0)− α(x− x0)− β(y − y0),

then define

φ(x, y) =

α +
(x− x0)g(x, y)

(x− x0)2 + (y − y0)2
, (x, y) ̸= (x0, y0),

α, (x, y) = (x0, y0),

and

ψ(x, y) =

β +
(y − y0)g(x, y)

(x− x0)2 + (y − y0)2
, (x, y) ̸= (x0, y0),

β, (x, y) = (x0, y0).

If (x, y) ∈ S \ {(x0, y0)}, then
(x−x0)φ(x, y)+(y−y0)ψ(x, y) = α(x−x0)+β(y−y0)+g(x, y) = f(x, y)−f(x0, y0).
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Also, if (x, y) = (x0, y0), then

(x− x0)φ(x, y) + (y − y0)ψ(x, y) = 0 = f(x, y)− f(x0, y0).

Hence for all (x, y) ∈ S, f(x, y) − f(x0, y0) = (x − x0)φ(x, y) + (y −
y0)ψ(x, y).

Again, for all (x, y) ∈ S \ {(x0, y0)}, we have

|φ(x, y)−φ(x0, y0)| =
|x− x0||g(x, y)|

(x− x0)2 + (y − y0)2
≤ |g(x, y)|√

(x− x0)2 + (y − y0)2
.

Since f is differentiable at (x0, y0), the limit

lim
(x,y)→(x0,y0)

|g(x, y)|√
(x− x0)2 + (y − y0)2

= 0,

and hence it follows that

lim
(x,y)→(x0,y0)

φ(x, y) = φ(x0, y0).

Therefore φ is continuous at (x0, y0). Similarly, we can show ψ is
continuous at (x0, y0).
Conversely, let there exist functions φ, ψ : S → R such that φ, ψ are

continuous at (x0, y0) and

f(x, y)− f(x0, y0) = (x− x0)φ(x, y) + (y − y0)ψ(x, y)

for all (x, y) ∈ S. Then for all (x, y) ∈ S \ {(x0, y0)}, we have

|f(x, y)− f(x0, y0)− (x− x0)φ(x0, y0)− (y − y0)ψ(x0, y0)|√
(x− x0)2 + (y − y0)2

≤ (x− x0)|φ(x, y)− φ(x0, y0)|√
(x− x0)2 + (y − y0)2

+
(y − y0)|ψ(x, y)− ψ(x0, y0)|√

(x− x0)2 + (y − y0)2

≤ |φ(x, y)− φ(x0, y0)|+ |ψ(x, y)− ψ(x0, y0)|.

Since φ and ψ are continuous at (x0, y0),

lim
(x,y)→(x0,y0)

|φ(x, y)−φ(x0, y0)| = 0 and lim
(x,y)→(x0,y0)

|ψ(x, y)−ψ(x0, y0)| = 0.

Hence,

lim
(x,y)→(x0,y0)

|f(x, y)− f(x0, y0)− (x− x0)φ(x0, y0)− (y − y0)ψ(x0, y0)|√
(x− x0)2 + (y − y0)2

= 0,

and therefore f is differentiable at (x0, y0). □
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7. Let the temperature T (x, y) at any point (x, y) ∈ R2 be given by
T (x, y) = 2x2 + xy + y2. An insect is at the point (1, 1).
(a) What is the best direction for the insect to move to feel cooler?
(b) In which direction should the insect move to feel no change in tem-
perature?

Solution. Since Tx(x, y) = 4x + y and Ty(x, y) = x + 2y for all
(x, y) ∈ R2, Tx : R2 → R and Ty : R2 → R are continuous and hence
T : R2 → R is differentiable. Since

∇T (1, 1) = (Tx(1, 1), Ty(1, 1)) = (5, 3),

the temperature will decrease fastest in the direction

− 1

∥∇T (1, 1)∥
∇T (1, 1) =

(
− 5√

34
,− 3√

34

)
,

and so this is the best direction for the insect to start moving to feel
cooler.

Again, if u = (u1, u2) ∈ R2 with ∥u∥ = 1 is the direction for the
insect to feel no change in temperature, then we must have

DuT (1, 1) = ∇T (1, 1) · u = 0.

This gives 5u1 + 3u2 = 0. Since we also have u21 + u22 = 1, we get

u =

(
3√
34
,− 5√

34

)
or

(
− 3√

34
,

5√
34

)
.

□


