MA201: Complex Analysis

Assignment 1 (Elementary properties of complex numbers) July - November, 2024

1. Prove the following statements:

- (a) If $z \in \mathbb{C}$, then $|z| \leq |\Re(z)| + |\operatorname{Im}(z)| \leq \sqrt{2} |z|$.
- (b) If $z_1, z_2 \in \mathbb{C}$, then $|z_1 + z_2| \leq |z_1| + |z_2|$. Show that equality holds if and only if one of them is a nonnegative scalar multiple of the other.
- (c) If either $|z_1| = 1$ or $|z_2| = 1$, but not both, then prove that $\left| \frac{z_1 z_2}{1 \overline{z_1} z_2} \right| = 1$. What exception must be made for the validity of the above equality when $|z_1| = |z_2| = 1$?
- 2. Show that the equation $z^4 + z + 5 = 0$ has no solution in the set $\{z \in \mathbb{C} : |z| < 1\}$.
- 3. If z and w are in \mathbb{C} such that $\operatorname{Im}(z) > 0$ and $\operatorname{Im}(w) > 0$, show that $\left| \frac{z-w}{z-\overline{w}} \right| < 1$.
- 4. When does $az + b\overline{z} + c = 0$ has exactly one solution?
- 5. If $1 = z_0, z_1, \ldots, z_{n-1}$ are distinct n^{th} roots of unity, prove that

$$\prod_{j=1}^{n-1} (z - z_j) = \sum_{j=0}^{n-1} z^j.$$