MA201: Complex Analysis

(Assignment 1 Hint/ model solutions: Elementary properties of complex numbers) July - November, 2024

1. Prove the following statements:

(a) If $z \in \mathbb{C}$, then $|z| \le |\Re(z)| + |\operatorname{Im}(z)| \le \sqrt{2} |z|$.

Answer: Observe that, for any two real numbers x and y, we have

$$(|x| - |y|)^2 \ge 0 \Longrightarrow |x|^2 + |y|^2 \ge 2|x||y|.$$

Let z = x + iy be any complex number.

Now,

$$(|x| + |y|)^{2} = |x|^{2} + |y|^{2} + 2|x| |y| \le |x|^{2} + |y|^{2} + |x|^{2} + |y|^{2}$$
$$= 2(|x|^{2} + |y|^{2}) = 2(x^{2} + y^{2}) = 2|z|^{2}.$$

This gives that $|\Re(z)| + |\text{Im}(z)| = |x| + |y| \le \sqrt{2} |z|.$

$$\begin{aligned} |z| &= \sqrt{x^2 + y^2} \le \sqrt{x^2 + y^2 + 2|x| |y|} = \sqrt{|x|^2 + |y|^2 + 2|x| |y|} \\ &= \sqrt{(|x| + |y|)^2} = |x| + |y| . \end{aligned}$$

That is, $|z| \le |\Re(z)| + |\text{Im}(z)|$.

(b) If $z_1, z_2 \in \mathbb{C}$, then $|z_1 + z_2| \leq |z_1| + |z_2|$. Show that equality holds if and only if one of them is a nonnegative scalar multiple of the other.

Answer: Do yourself.

(c) If either $|z_1| = 1$ or $|z_2| = 1$, but not both, then prove that $\left|\frac{z_1 - z_2}{1 - \overline{z_1} z_2}\right| = 1$. What exception must be made for the validity of the above equality when $|z_1| = |z_2| = 1$? **Answer: Case I:** $|z_1| = 1$ and $|z_2| \neq 1$

$$\left| \frac{z_1 - z_2}{1 - \overline{z_1} \, z_2} \right|^2 = \frac{|z_1|^2 + |z_2|^2 - 2\Re(z_1\overline{z_2})}{1 + |\overline{z_1}z_2|^2 - 2\Re(z_1\overline{z_2})}$$
$$= \frac{1 + |z_2|^2 - 2\Re(z_1\overline{z_2})}{1 + |z_2|^2 - 2\Re(z_1\overline{z_2})} = 1 .$$

Observe that the denominator $1 + |\overline{z_1}z_2|^2 - 2\Re(z_1\overline{z_2}) \neq 0$ if $|z_1| = 1$ and $|z_2| \neq 1$.

Case II: $|z_2| = 1$ and $|z_1| \neq 1$

It can be worked out similarly as in the previous case.

Case III: $|z_1| = 1$ and $|z_2| = 1$

Then, $\left|\frac{z_1 - z_2}{1 - \overline{z_1} z_2}\right|^2 = \frac{2 - 2\Re(z_1\overline{z_2})}{2 - 2\Re(z_1\overline{z_2})} = 1$ if the denominator $2 - 2\Re(z_1\overline{z_2}) \neq 0$. That is, $\Re(z_1\overline{z_2}) \neq 1$ if and only if $z_1 \neq z_2$. So, the exception is to be made for the validity of the above equality in this case is $z_1 \neq z_2$.

- 2. Show that the equation $z^4 + z + 5 = 0$ has no solution in the set $\{z \in \mathbb{C} : |z| < 1\}$. **Answer:** Suppose α is a solution. So $|\alpha| < 1$ and $\alpha^4 + \alpha = -5$. Then $5 = |\alpha^4 + \alpha| \le 2$.
- 3. If z and w are in \mathbb{C} such that $\operatorname{Im}(z) > 0$ and $\operatorname{Im}(w) > 0$, show that $|\frac{z-w}{z-\overline{w}}| < 1$.

Answer:

$$\left|\frac{z-w}{z-\bar{w}}\right|^2 \le 1 \iff (z-\bar{z})(w-\bar{w}) < 0.$$

Clearly $(z-\bar{z})(w-\bar{w}) < 0$ if $\operatorname{Im}(z) > 0$ and $\operatorname{Im}(w) > 0.$

Clearly (z - z)(w - w) < 0 if $\operatorname{Im}(z) > 0$ and $\operatorname{Im}(w) > 0$

4. When does $az + b\overline{z} + c = 0$ has exactly one solution?

Answer: Let z = x + iy, $a = a_1 + ia_2$, $b = b_1 + ib_2$ and $c = c_1 + ic_2$ and put these values in the given equation $az + b\overline{z} + c = 0$. After simplification (please check it carefully!) we have,

$$(a_1x - a_2y) + i(a_2x + a_1y) + (b_1x + b_2y) + i(b_2x - b_1y) + c_1 + ic_2 = 0$$

After equating real and imaginary parts we get the following system of linear equations

$$(a_1 + b_1)x + (b_2 - a_2)y = c_1$$

 $(a_2 + b_2)x + (a_1 - b_1)y = c_2.$

Therefore given equation has exactly one solution if the above system of linear equations has unique solution. In this case

$$(a_1 + b_1)(a_1 - b_1) - (b_2 - a_2)(a_2 + b_2) \neq 0.$$

In fact the given equation has exactly one solution if $|a| \neq |b|$.

5. If $1 = z_0, z_1, \ldots, z_{n-1}$ are distinct n^{th} roots of unity, prove that

$$\prod_{j=1}^{n-1} (z - z_j) = \sum_{j=0}^{n-1} z^j.$$

Answer: The points $1 = z_0, z_1, \ldots, z_{n-1}$ are the roots of $z^n - 1 = 0$. So $z^n - 1 = (z-1)\prod_{j=1}^{n-1}(z-z_j) = (z-1)\sum_{j=0}^{n-1} z^j$. Let $f(z) = \prod_{j=1}^{n-1}(z-z_j)$ and $g(z) = \sum_{j=0}^{n-1} z^j$. Thus f(z) = g(z) for $z \neq 1$. Since both f, g are continuous it follows that f(1) = g(1) as well.