MA201: Complex Analysis

(Assignment 2 Hint/ model solutions: Topology of complex plane and differentiability) July - November, 2024

- 1. For each subset of \mathbb{C} , determine if it is open, closed, or not, with justification:
	- (a) $A_1 = \{z \in \mathbb{C} : Re(z) = 1 \text{ and } Im(z) \neq 4\}$

Answer: $A_1 = \{z = x + iy : x = 1\} \setminus \{1 + 4i\}$. Neither open nor closed.

(b) $A_2 = B(1,1) \cup B(2,\frac{1}{2})$ $(\frac{1}{2}) \cup B(3, \frac{1}{3})$ $\frac{1}{3}$

Answer: Open set.

- (c) $A_3 = \{ z \in \mathbb{C} : \left| \frac{z-1}{z+1} \right| = 2 \}$ Answer: $A_3 = \{z = x + iy : (x + 5/3)^2 + y^2 = 16/9\}$ is a closed set.
- (d) $A_4 = \{z \in \mathbb{C} : \sin(Re(z)) < Im(z) < 1\}$ Answer: Let $S_1 = \{z \in \mathbb{C} : \sin(Re(z)) < Im(z) \}$ and $S_2 = \{z \in \mathbb{C} : Im(z) < 1 \}.$ Clearly both S_1 and S_2 are open sets. Hence the given set is open, being the intersection of S_1 and S_2 .
- 2. For each of the following subsets of C, determine their interior, exterior and boundary:
	- (a) $S_1 = \{z \in \mathbb{C} : |z| < 1 \text{ and } Im(z) \neq 0\} \cup \{z \in \mathbb{C} : |z| > 1 \text{ and } Im(z) = 0\}$. Answer: Interior of $S_1 = \{z \in \mathbb{C} : |z| < 1 \text{ and } Im(z) \neq 0\}.$ Exterior of $S_1 = (\bar{S}_1)^c = \emptyset$.

Boundary of S_1 is the unit circle union the real line.

(b) $S_2 = \{ re^{i/n} \in \mathbb{C} : r > 0, n \in \mathbb{N} \} \cup \{ z \in \mathbb{C} : Re(z) < 0 \}.$ Answer: Interior of $S_2 = \{z \in \mathbb{C} : Re(z) < 0\}.$ Exterior of $S_2 = \overline{S_2^c} = \left[\{ re^{i/n} \in \mathbb{C} : r > 0, n \in \mathbb{N} \} \cup \{ z \in \mathbb{C} : Re(z) \le 0 \} \cup \{ z \in \mathbb{N} \} \right]$ $\mathbb{C}: Re(z) \geq 0, Im(z) = 0$]^c.

Boundary of $S_2 = \{ re^{i/n} \in \mathbb{C} : r > 0, n \in \mathbb{N} \} \cup \{$ positive real axis $\} \cup \{$ imaginary axis $\}.$

- 3. Show that $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (x, -y)$ for all $(x, y) \in \mathbb{R}^2$ is differentiable at every point in \mathbb{R}^2 . View the same function as a complex function. Show that $f: \mathbb{C} \to \mathbb{C}$ defined by $f(z) = \overline{z}$ for all $z \in \mathbb{C}$ is not differentiable at any point in \mathbb{C} . Answer: Do it yourself.
- 4. Let $f(z) = z^3$. For $z_1 = 1$ and $z_2 = i$, show that there does not exist any point c on the line $y = 1 - x$ joining z_1 and z_2 such that

$$
\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(c)
$$

(Mean value theorem does not extend to complex derivatives).

Answer: $f(1) - f(i)$ $1 - i$ $= |\frac{1+i}{1-i}|$ $\frac{1+i}{1-i}$ = 1. Any point on $[1, i]$ (is the line segment joining 1 and i) has mod value $\geq \frac{1}{\sqrt{2}}$ $\frac{1}{2}$. So $|f'(z)| = |3z^2| \ge \frac{3}{2} > 1$.

5. If $f(z)$ is a real valued function in a domain $D \subseteq \mathbb{C}$, then show that either $f'(z) = 0$ or $f'(z)$ does not exist in D.

Hint: Use C-R equations.

Answer:

$$
\lim_{w \to w_0 \in \bar{U}} \frac{g(w) - g(w_0)}{w - w_0} = \lim_{z \to z_0 \in U} \frac{g(\bar{z}) - g(\bar{z_0})}{\bar{z} - \bar{z_0}} = \lim_{z \to z_0 \in U} \frac{f(z) - f(z_0)}{z - z_0} = \overline{f'(z_0)}
$$

7. Derive the Cauchy-Riemann equations in polar coordinates.

Answer: Let
$$
f(z) = f(re^{i\theta}) = u(r, \theta) + iv(r, \theta)
$$
 be differentiable at $z_0 = r_0 e^{i\theta_0}$. Then

$$
f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}
$$

exists.

First we calculate the limit $z \to z_0$ for fixed θ and letting $r \to r_0$. Then

$$
f'(z_o) = \lim_{r \to r_0} \frac{f(re^{i\theta_0}) - f(r_0e^{i\theta_0})}{re^{i\theta_0} - r_0e^{i\theta_0}}
$$

$$
= \frac{1}{e^{i\theta_0}} \lim_{r \to r_0} \frac{u(r, \theta_0) - u(r_0, \theta_0) + i[v(r, \theta_0) - v(r_0, \theta_0)]}{r - r_0}
$$

$$
= \frac{1}{e^{i\theta_0}} \left(\frac{\partial u}{\partial r}(r_0, \theta_0) + i\frac{\partial v}{\partial r}(r_0, \theta_0)\right)
$$

Now calculate the limit $z \to z_0$ along the circle $r \to r_0$. In this case we have:

$$
f'(z_0) = \lim_{\theta \to \theta_0} \frac{f(r_0 e^{i\theta}) - f(r_0 e^{i\theta_0})}{r_0 e^{i\theta} - r_0 e^{i\theta_0}}
$$

\n
$$
= \frac{1}{r_0} \lim_{\theta \to \theta_0} \left\{ \left(\frac{u(r_0, \theta) - u(r_0, \theta_0) + i[v(r_0, \theta) - v(r_0, \theta_0)]}{e^{i\theta} - e^{i\theta_0}} \right) \frac{\theta - \theta_0}{e^{i\theta} - e^{i\theta_0}} \right\}
$$

\n
$$
= \frac{1}{ir_0 e^{i\theta_0}} \left(\frac{\partial u}{\partial \theta} (r_0, \theta_0) + i \frac{\partial v}{\partial \theta} (r_0, \theta_0) \right) = \frac{1}{r_0 e^{i\theta_0}} \left(\frac{\partial v}{\partial \theta} (r_0, \theta_0) - i \frac{\partial u}{\partial \theta} (r_0, \theta_0) \right)
$$

\n
$$
= \frac{1}{ir_0 e^{i\theta_0}} \left(\frac{\partial u}{\partial \theta} (r_0, \theta_0) + i \frac{\partial v}{\partial \theta} (r_0, \theta_0) \right) = \frac{1}{r_0 e^{i\theta_0}} \left(\frac{\partial v}{\partial \theta} (r_0, \theta_0) - i \frac{\partial u}{\partial \theta} (r_0, \theta_0) \right)
$$

8. Let $f : \mathbb{D} \to \mathbb{C}$ be a differentiable function such that, for all $z, w \in \mathbb{C}$, $f(z) = f(w)$, whenever $|z| = |w|$. Prove that f is a constant function.

Hint: It is given that $f(z) = f(w)$ if $|z| = |w|$. This means that the function f is independent of the argument (i.e. $f(e^{i\theta}z) = f(z)$ for all θ .) Now, use C-R equations in the polar coordinates.

9. Let $f = u + iv$ is an analytic function defined on the whole complex plane C. If $u(x, y) = \phi(x)$ and $v(x, y) = \psi(y)$ prove that, for all $z \in \mathbb{C}$, $f(z) = az + b$ for some $a \in \mathbb{C}, b \in \mathbb{C}.$

Answer: From C-R equations we have $\phi'(x) = \psi'(y)$ for all $z = x + iy \in \mathbb{C}$. In particular $\phi'(0) = \psi'(y)$ and $\phi'(x) = \psi'(0)$ for all $x, y \in \mathbb{R}$. Also $f'(z) = \phi'(x) = \psi'(y)$ hence $f'(z) = a$ (constant). If we consider $g(z) = f(z) - az$, then $g'(z) = 0$. Therefore, $g(z) = b(constant)$ i.e. $f(z) = az + b$.