MA201: Complex Analysis

Assignment 3

(Elementary Functions and Complex Line Integrals.)

July - November, 2024

1. Let u and v be nonconstant harmonic functions on \mathbb{C} .

(a) If U(x, y) = u(x, -y), is U also harmonic?

- (b) If v is a harmonic conjugate of u, is u a harmonic conjugate of v?
- (c) Is uv always harmonic? If not, produce an example.
- 2. If v is a harmonic conjugate of u (u, v real valued), prove that the functions uv and $u^2 v^2$ are also harmonic.
- 3. What are all real valued harmonic functions u on D such that u^2 is also harmonic?
- 4. Find a harmonic conjugate, if it exists, of the following functions:

(a)
$$u(x,y) = 2xy$$

- (b) $u(r,\theta) = r^n \cos n\theta, n \in \mathbb{N}.$
- (c) $u(x,y) = x^2 y^2 + x + y \frac{y}{x^2 + y^2}$.
- 5. Let us define differential operators $\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} i \frac{\partial}{\partial y} \right)$ and $\frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. Let f = u + iv be defined on an open set in \mathbb{C} . Show that:
 - (a) f satisfies C-R equations if and only if $\frac{\partial}{\partial \bar{z}} f(z) = 0$.
 - (b) If $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$, then show that $\Delta f = 4 \frac{\partial^2}{\partial z \partial \overline{z}} f$.
 - (c) Prove that the function $f : \mathbb{C} \to \mathbb{C}$ given by $f(z) = \overline{z}^n$ is harmonic for all $n \in \mathbb{N}$.
- 6. Find the values of z such that (a) $e^z \in \mathbb{R}$ and (b) $e^z \in i\mathbb{R}$.
- 7. Prove that $\sinh(\text{Im}z) \leq |\sin(z)| \leq \cosh(\text{Im}z)$. Deduce that $|\sin(z)|$ tends to ∞ as $|\text{Im}z| \to \infty$.
- 8. Find all the complex numbers which satisfy the following:

(i)
$$\exp(z) = 1$$
 (ii) $\exp(z) = i$ (iii) $\exp(z - 1) = 1$.

9. Evaluate the following:

(i) $\log(3-2i)$ (ii) $\log i$ (iii) $(i)^{(-i)}$

- 10. If γ is the boundary of the triangle with vertices at the points 0, 3i and -4 oriented in the counterclockwise direction then show that $\left| \int_{\alpha} (e^z - \overline{z}) dz \right| \leq 60.$
- 11. Evaluate $\int_{\gamma} |z| \, \overline{z} \, dz$ where γ is the circle |z| = 2.