MA201: Complex Analysis

Assignment 3

(Elementary Functions and Complex Line Integrals.)

July - November, 2024

- 1. Let u and v be nonconstant harmonic functions on \mathbb{C} .
	- (a) If $U(x, y) = u(x, -y)$, is U also harmonic? Answer: Do it yourself.
	- (b) If v is a harmonic conjugate of u, is u a harmonic conjugate of v ? **Answer:** If v is a harmonic conjugate of u, and u a harmonic conjugate of v, then $f_1 = u + iv$ and $f_2 = v + iu$ both are analytic, which forces u and v to be constant.
	- (c) Is uv always harmonic? If not, produce an example. **Answer:** Notice that uv is harmonic if and only if $u_xv_x + u_yv_y = 0$. In particular, $u(x, y) = x = v(x, y)$. Then uv is not harmonic.
- 2. If v is a harmonic conjugate of $u(u, v$ real valued), prove that the functions uv and $u^2 - v^2$ are also harmonic.

Answer: Let $f = u + iv$. Then f is analytic, and hence $f^2 = (u^2 - v^2) + i(2uv)$ analytic. Implies uv and $u^2 - v^2$ are also harmonic.

- 3. What are all real valued harmonic functions u on D such that u^2 is also harmonic? **Answer:** u^2 is harmonic if and only if $u_x^2 + u_y^2 = 0$.
- 4. Find a harmonic conjugate, if it exists, of the following functions:

$$
(a) u(x, y) = 2xy.
$$

(b) $u(r, \theta) = r^n \cos n\theta, n \in \mathbb{N}$.

(c) $u(x,y) = x^2 - y^2 + x + y - \frac{y}{x^2+y}$ $\frac{y}{x^2+y^2}$. **Answer:** (a) $v(x, y) = y^2 - x^2 + c$ (b) $v(r, \theta) = r^n \sin n\theta + c$

(c) $v(x, y) = 2xy + y - x + \frac{x}{x^2 + y}$ $\frac{x}{x^2+y^2} + c.$ 5. Let us define differential operators $\frac{\partial}{\partial z} = \frac{1}{2}$ $\frac{1}{2}\left(\frac{\partial}{\partial x}-i\frac{\partial}{\partial y}\right)$ and $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}$ $\frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$. Let

- $f = u + iv$ be defined on an open set in \mathbb{C} . Show that:
- (a) f satisfies C-R equations if and only if $\frac{\partial}{\partial \bar{z}} f(z) = 0$.
- (b) If $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$ $\frac{\partial^2}{\partial y^2}$, then show that $\Delta f = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$ $\frac{\partial^2}{\partial z \partial \bar{z}} f$.
- (c) Prove that the function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = \overline{z}^n$ is harmonic for all $n \in \mathbb{N}$. Answer: Do yourself.
- 6. Find the values of z such that (a) $e^z \in \mathbb{R}$ and (b) $e^z \in i\mathbb{R}$.

Answer:

$$
e^z = e^{x+i y} = e^x (\cos(y) + i \sin(y))
$$
.

We know that $e^x \neq 0$ for all $x \in \mathbb{R}$.

 e^z is a real number iff $\sin y = 0$ iff $y = n\pi$ where $n \in \mathbb{Z}$.

 e^z is a pure imaginary number iff $\cos y = 0$ iff $y = \frac{(2n+1)\pi}{2}$ where $n \in \mathbb{Z}$.

7. Prove that $sinh(Im z) \leq |sin(z)| \leq cosh(Im z)$. Deduce that $|sin(z)|$ tends to ∞ as $|{\rm Im}z|\to\infty$.

Answer: Set $z = x + iy$. We know that

$$
\sin z = \sin x \cosh y + i \cos x \sinh y.
$$

$$
|\sin z|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y
$$

= $\sin^2 x (1 + \sinh^2 y) + \cos^2 x \sinh^2 y$
= $\sin^2 x + \sinh^2 y$

$$
|\sin z| = \sqrt{\sin^2 x + \sinh^2 y} \le \sqrt{1 + \sinh^2 y} = \sqrt{\cosh^2 y} = \cosh y
$$
.

Thus,

$$
|\sin z| \leq \cosh y.
$$

Now,

$$
|\sin z|^2 = \sin^2 x + \sinh^2 y \ge \sinh^2 y = |\sinh y|^2.
$$

$$
|\sin z| \ge |\sinh y| \ge \sinh y.
$$

We know that sinh y tends to $+\infty$ as $y \to +\infty$ and sinh y tends to $-\infty$ as $y \to -\infty$. Since $|\sin z| \ge |\sinh y|$, it happens that $|\sin z| \to \infty$ as $|y| \to \infty$.

8. Find all the complex numbers which satisfy the following:

(i) $\exp(z) = 1$ (ii) $\exp(z) = i$ (iii) $\exp(z - 1) = 1$.

Answer: This is the solution for part (iii); solutions for other parts are similar.

We need to find $z = x+iy$ such that $exp(z-1) = exp(x+iy-1) = exp((x-1) + iy)$ $e^{(x-1)}(\cos y + i \sin y) = 1.$

That is,

$$
e^{(x-1)}\cos y = 1
$$
 and $e^{(x-1)}\sin y = 0$.

Observe that $e^{(x-1)} \neq 0$ for all $x \in \mathbb{R}$. Therefore, we need a y such that $\sin y = 0$ and $\cos y > 0$. This gives that $y = 2k\pi$ where $k \in \mathbb{Z}$.

When $y = 2k\pi$, $\cos y = 1$ and hence we need a x such that $e^{(x-1)} = 1$. It gives that $x = 1$. Hence, the points $z_k = (1, 2k\pi)$ where $k \in \mathbb{Z}$ are solutions of the equation $exp(z - 1) = 1.$

9. Evaluate the following:

(i)
$$
\log(3-2i)
$$
 (ii) $\log i$ (iii) $(i)^{(-i)}$

Answer: (i) We know that if $z \neq 0$, then $\log(z) = \ln |z| + i \arg(z)$.

$$
\log(3 - 2i) = \ln|3 - 2i| + i \arg(3 - 2i) = \ln|\sqrt{13}| + i(\alpha + 2n\pi)
$$

where $\alpha = \tan^{-1}(-2/3)$ and $n \in \mathbb{Z}$. Therefore,

$$
\log(3 - 2i) = \frac{1}{2} \ln(13) + i \left(\alpha + 2n\pi\right)
$$

where $\alpha = \tan^{-1}(-2/3)$ and $n \in \mathbb{Z}$.

(ii) Recall if $z \neq 0$ then $\text{Log}(z) = \ln |z| + i \text{Arg}(z)$ where Arg denotes the principal value of the argument.

Log (i) = ln |i| + i Arg (i) = ln(1) + i
$$
\frac{\pi}{2} = \frac{i \pi}{2}
$$
.

(iii) We know for any $z \neq 0$ and w in \mathbb{C} , $z^w = \exp(w \log z)$. Therefore,

$$
(i)^{(-i)} = \exp ((-i) \log(i)) = \exp ((-i) [\ln |i| + i \arg(i)])
$$

=
$$
\exp \left((-i) [\ln(1) + i (\frac{\pi}{2} + 2n\pi)]\right)
$$

=
$$
\exp \left((-i) [i (\frac{\pi}{2} + 2n\pi)]\right)
$$

=
$$
\exp (\frac{\pi}{2} + 2n\pi)
$$

where $n \in \mathbb{Z}$.

10. If γ is the boundary of the triangle with vertices at the points 0, 3i and −4 oriented in the counterclockwise direction then show that $\begin{array}{c} \hline \end{array}$ C $(e^z - \overline{z}) dz$ ≤ 60. **Answer:** Observe that the length of the curve γ is 12 i.e. $L = 12$. Note that the function $|f(z)| = |e^z - \overline{z}| \leq |e^z| + |\overline{z}| = e^{\mathbb{R}e(z)} + |z|$. Therefore $|f(z)| \leq$ $e^{\mathbb{R}e(z)} + |z| \leq 1 + |z| = 5$ for $z \in \gamma$ i.e. $M = 5$.

Now by ML inequality we have,

$$
\left| \int_{\gamma} (e^z - \overline{z}) \, dz \right| \le 5 \times 12 = 60.
$$

11. Evaluate \int γ |z| \overline{z} dz where γ is the circle $|z| = 2$. Answer: Use the formula

$$
\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt.
$$

Here $\gamma(t) = 2e^{it}$ for $t \in [0, 2\pi]$ and $f(z) = |z| \overline{z}$. This gives that $\gamma'(t) = 2i e^{it}$ for $t \in [0, 2\pi].$

$$
\int_{\gamma} |z| \ \overline{z} \ dz \ = \ \int_0^{2\pi} \left(2 \times 2e^{-it} \right) \ (2i \ e^{it}) \ dt = 8i \ \int_0^{2\pi} \ dt = 16\pi i.
$$